Both nuclear fusion and nuclear fission reactions

All of the energy we produce comes from basic chemical and physical processes.

That’s mostly been accomplished throughout history by burning carbon-based material like wood, coal and gas—or by harnessing power from the sun, wind, and water.

Fission and fusion are two physical processes that produce massive amounts of energy from atoms.

They yield millions of times more energy than other sources through nuclear reactions.

You can check out the difference between the two in this video below.

Fission

Fission occurs when a neutron slams into a larger atom, forcing it to excite and split into two smaller atoms—also known as fission products. Additional neutrons are also released that can initiate a chain reaction.

When each atom splits, a tremendous amount of energy is released.

Uranium and plutonium are most commonly used for fission reactions in nuclear power reactors because they are easy to initiate and control.

The energy released by fission in these reactors heats water into steam. The steam is used to spin a turbine to produce carbon-free electricity.

Fusion

Fusion occurs when two atoms slam together to form a heavier atom, like when two hydrogen atoms fuse to form one helium atom.

This is the same process that powers the sun and creates huge amounts of energy—several times greater than fission. It also doesn’t produce highly radioactive fission products.

Fusion reactions are being studied by scientists, but are difficult to sustain for long periods of time because of the tremendous amount of pressure and temperature needed to join the nuclei together.

May 27, 2021 Comments (17)

Editor's note: This article was originally published on January 30, 2013. It has been revised, updated and republished. 

Both nuclear fusion and nuclear fission reactions

NASA

Inside the sun, fusion reactions take place at very high temperatures and enormous gravitational pressures

Look up during the day to see one of the most powerful examples of a nuclear reactor: the sun. Inside the sun, fusion reactions take place at very high temperatures and enormous gravitational pressures.

The foundation of nuclear energy is harnessing the power of atoms by splitting apart, a process called fission, or combining them, called fusion. Both fission and fusion alter atoms to create energy, but what is the difference between the two?

Fission, a term coined by scientists LIse Meitner and Otto Frisch, is named after the term “binary fission” in biology to describe cell division. Just as cell’s divide, in fission an atom splits into smaller particles. Fission takes place when a large, somewhatunstable isotope (atoms with the same number of protons but different number of neutrons) is bombarded by high-speed particles, usually neutrons. These neutrons are accelerated and then slammed into the unstable isotope, causing it to fission, or break into smaller particles. During the process, a neutron is accelerated and strikes the target nucleus, which in the majority of nuclear power reactors today is Uranium-235. This splits the target nucleus and breaks it down into two smaller isotopes (the fission products), three high-speed neutrons, and a large amount of energy. This resulting energy is then used to heat water in nuclear reactors and ultimately produces electricity. The high-speed neutrons that are ejected become projectiles that initiate other fission reactions, or chain reactions.

Both nuclear fusion and nuclear fission reactions

EIA

Nuclear Fission

Conversely, fusion takes place when two low-mass isotopes, typically isotopes of hydrogen, unite under conditions of extreme pressure and temperature. Atoms of Tritium and Deuterium (isotopes of hydrogen, Hydrogen-3 and Hydrogen-2, respectively) unite under extreme pressure and temperature to produce a neutron and a helium isotope. Along with this, an enormous amount of energy is released, which is several times the amount produced from fission.

Both nuclear fusion and nuclear fission reactions

DOE

Nuclear Fusion

While fission is used in nuclear power reactors since it can be controlled, fusion is not yet utilized to produce power. Some scientists believe there are opportunities to do so. Fusion offers an appealing opportunity, since fusion creates less radioactive material than fission and has a nearly unlimited fuel supply. These benefits are countered by the difficulty in harnessing fusion. Fusion reactions are not easily controlled, and it is expensive to create the needed conditions for a fusion reaction. However, research continues into ways to better harness the power of fusion, but research is in experimental stages, as scientists continue to work on controlling nuclear fusion in an effort to make a fusion reactor to produce electricity.

Both fission and fusion are nuclear reactions that produce energy, but the processes are very different. Fission is the splitting of a heavy, unstable nucleus into two lighter nuclei, and fusion is the process where two light nuclei combine together releasing vast amounts of energy. While different, the two processes have an important role in the past, present and future of energy creation.

Comments (17)

Can nuclear fission and fusion happen at the same time?

Hybrid nuclear fusion–fission (hybrid nuclear power) is a proposed means of generating power by use of a combination of nuclear fusion and fission processes. The basic idea is to use high-energy fast neutrons from a fusion reactor to trigger fission in non-fissile fuels like U-238 or Th-232.
The main difference between these two processes is that fission is the splitting of an atom into two or more smaller ones while fusion is the fusing of two or more smaller atoms into a larger one.

What type of energy are both fission and fusion?

The foundation of nuclear energy is harnessing the power of atoms by splitting apart, a process called fission, or combining them, called fusion.

Which statement is true of both nuclear fusion and nuclear fission?

Which of the following is true of both nuclear fusion and nuclear fission? They both have a high energy output.