Can a free radical can interact with a molecule to generate a new free radical species?

1. Gomberg M. An Incidence of Trivalent Carbon Trimethylphenyl. J Am Chem Soc. 1900;22:757–771. [Google Scholar]

2. Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO. Oxygen poisoning and x-irradiation-A mechanism in common. Science. 1954;119:623–626. [PubMed] [Google Scholar]

3. Commoner B, Townsend J, Pake GE. Free radicals in biological materials. Nature. 1954;174(4432):689–691. [PubMed] [Google Scholar]

4. McCord JM, Fridovich I. Superoxide dismutase an enzymatic function for erythrocuprein (chemocuprein) J Biol Chem. 1969;244(22):6049–6055. [PubMed] [Google Scholar]

5. Loschen G, Flohe L, chance B. Respiratory chain linked H O production in pigeon heart mitochondria. FEBS Lett. 1971;18(2):261–264. [PubMed] [Google Scholar]

6. Nohl H, Hegner D. Do mitochondria produce oxygen radicals in vivo? Eur J Biochem. 1978;82:563–567. [PubMed] [Google Scholar]

7. Mittal CK, Murad F. Activation of guanylate cyclase by superoxide-dismutase and hydroxyl radical-Physiological regulator of guanosine 3′,5′-monophosphate formation. Proc Natl Acad Sci USA. 1977;74(10):4360–4364. [PMC free article] [PubMed] [Google Scholar]

8. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 2. Oxford: Clarendon Press; 1989. [Google Scholar]

9. Mukherji SM, Singh SP. Reaction mechanism in organic chemistry. Madras: Macmillan IndiaPress; 1986. [Google Scholar]

10. Pham-Huy LA, Hua He, Pham-Huy C. Free Radicals, Antioxidants in Disease and Health. Int J Biomed Sci. 2008;4(2):89–96. [PMC free article] [PubMed]

11. Valko M, Leibfritz D, Moncola J, Cronin MT, Mazura M, Telser J. Review Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84. [PubMed] [Google Scholar]

12. Nordberg J, Arner EJ. Reactive oxygen species, antioxidants, and the mammalian Thioredoxin system. Free Radical Biol Med. 2001;31(11):1287–1312. [PubMed] [Google Scholar]

13. Yla-Herttuala S. Oxidized LDL and atherogenesis. Ann N Y Acad Sci. 1999;874:134–137. [PubMed] [Google Scholar]

14. Stadtman ER, Levine RL. Protein oxidation. Ann N Y Acad Sci. 2000;899:191–208. [PubMed] [Google Scholar]

15. Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis. 2000;21(3):361–370. [PubMed] [Google Scholar]

16. Kohen R, Nyska A. Invited review Oxidation of Biological Systems: Oxidative Stress Phenomena, Antioxidants, Redox Reactions, and Methods for Their Quantification. Toxicol Pathol. 2002;30(6):620–650. [PubMed] [Google Scholar]

17. Halliwell B. Free Radicals and other reactive species in disease. Nature Encyclopedia of life sciences. 2001. p. 1–7.

18. Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Review Cell Signal. 2007;19(9):1807–1819. [PubMed] [Google Scholar]

19. Mugoni V, Santoro MM. Manipulating redox signaling to block tumor angiogenesis, research directions in tumor angiogenesis, Dr. Jianyuan Chai (Ed.), ISBN: 978-953-51-0963-1, InTech, 2013. doi: 10.5772/54593.

20. Michelson AM, McCord JM, Fridovich I. Superoxide and Superoxide Dismutases. London: Academic Press; 1977. p. 320. [Google Scholar]

21. Kuppusamy P, Zweier JL. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J Biol Chem. 1989;264(17):9880–9884. [PubMed] [Google Scholar]

22. Kontos HA, Wei EP, Ellis EF, Jenkins LW, Povlishock JT, Rowe GT, et al. Appearance of superoxide anion radical in cerebral extracellular space during increased prostaglandin synthesis in cats. Circ Res. 1985;57(1):142–151. [PubMed] [Google Scholar]

23. McIntyre M, Bohr DF, Dominiczak AF. Endothelial function in hypertension. Hypertension. 1999;34:539–545. [PubMed] [Google Scholar]

24. Bielski BHJ, Cabelli DE. Superoxide and hydroxyl radical chemistry in aqueous solution. Active Oxygen in Chemistry. 1996;66–104.

25. Bielski BHJ, Cabelli BH, Arudi RL, Ross AB. Reactivity of RO2/O2. Radicals in aqueous solution. J Phys Chem Ref Data. 1985;14:1041–1100. [Google Scholar]

26. Bedwell S, Dean RT, Jessup W. The action of defined oxygen centred free radicals on human low density lipoprotein. Biochem J. 1989;262(3):707–712. [PMC free article] [PubMed] [Google Scholar]

27. Halliwell B. Oxidants and human disease: some new concepts. FASEB J. 1987;1(5):358–364. [PubMed] [Google Scholar]

28. Fenton HJH. Oxidation of tartaric acid in the presence of iron. J Chem Soc Trans. 1894;65:899–910. [Google Scholar]

29. Haber F, Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc London (A). 1934;147:332–351. [Google Scholar]

30. De Grey ADNJ. HO2˙: the forgotten radical. DNA Cell Biol. 2002;21:251–257. [PubMed] [Google Scholar]

31. Cerruti PA. Pro-oxidant states and tumor activation. Science. 1985;227:375–381. [PubMed] [Google Scholar]

32. Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Lett. 2000;486(1):10–13. [PubMed] [Google Scholar]

33. Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32(8):595–603. [PubMed] [Google Scholar]

34. Chae HZ, Kang SW, Rhee SG. Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol. 1999;300:219–226. [PubMed] [Google Scholar]

35. Hojo Y, Okado A, kawazoe S, Mizutani T. In vivo singlet-oxygen generation in blood of chromium(VI)-treated mice an electron spin resonance spin-trapping study. Biol Trace Elem Res. 2000;76(1):85–93. [PubMed] [Google Scholar]

36. Agnez-Lima LF, Melo JT, Silva AE, Oliveira AH, Timoteo AR, Lima-Bessa KM, et al. Review DNA damage by singlet oxygen and cellular protective mechanisms. Mutat Res. 2012;751(1):1–14. [PubMed] [Google Scholar]

37. Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998;92(9):3007–3017. [PubMed] [Google Scholar]

38. Kanovasky JR. Singlet oxygen production by biological systems. Chem Biol Interact. 1989;70(1–2):1–28. [PubMed] [Google Scholar]

39. Chan HWS. Singlet oxygen analogs in biological systems: coupled oxygenation of 1,3-dienes by soybean lipoxidase. J Am Chem Soc. 1971;93(9):2357–2358. [Google Scholar]

40. Hayaishi O, Nozaki M. Nature and mechanisms of oxygenases. Science. 1969;164:389–396. [PubMed] [Google Scholar]

41. Kanofsky JR. Singlet oxygen production by lactoperoxidase. J Biol Chem. 1983;258(10):5991–5993. [PubMed] [Google Scholar]

42. Sies H, Menck CF. Singlet oxygen induced DNA damage. Mutat Res. 1992;275:367–375. [PubMed] [Google Scholar]

44. Goldstein BD, Lodi C, Collinson C, Balchum OJ. Ozone and lipid peroxidation. Arch Environ Heath. 1969;18:631–635. [PubMed] [Google Scholar]

45. Freeman BA, Mudd JB. Reaction of ozone with sulfhydryls of human erythrocytes. Arch Biochem Biophys. 1981;208(1):212–220. [PubMed] [Google Scholar]

46. Mudd JB, Leavitt R, Ongun A, McManus TT. Reaction of ozone with amino acids and proteins. Atmos Environ. 1969;3:669–681. [PubMed] [Google Scholar]

47. Mustafa MG. Biochemical Basis of Ozone Toxicity. Free Radical Biol Med. 1990;9:245–265. [PubMed] [Google Scholar]

48. Fetner RH. Ozone induced chromosome breakage in human cell culture. Nature. 1962;194:793–794. [PubMed] [Google Scholar]

49. Winterbourn CC, Kettle AJ. Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic Biol Med. 2000;29(5):403–409. [PubMed] [Google Scholar]

50. Albrich JM, McCarthy CA, Hurst JK. Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proc Natl Acad Sci USA. 1981;78(1):210–214. [PMC free article] [PubMed] [Google Scholar]

51. Winterbourn CC. Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim Biophys Acta. 1985;840(2):204–210. [PubMed] [Google Scholar]

52. Prutz WA. Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch Biochem Biophys. 1996;332(1):110–120. [PubMed] [Google Scholar]

53. Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999;43(3):521–531. [PubMed] [Google Scholar]

54. Chiueh CC. Neuroprotective properties of nitric oxide. Ann N Y Acad Sci. 1999;890:301–311. [PubMed] [Google Scholar]

55. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chandhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 1987;84:9265–9269. [PMC free article] [PubMed] [Google Scholar]

56. Wink DA, Mitchell JB. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998;25(4–5):434–456. [PubMed] [Google Scholar]

57. Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell. 1994;78(6):931–936. [PubMed] [Google Scholar]

58. Koshland DE., Jr The molecule of the year. Science. 1992;258(5090):1861. [PubMed] [Google Scholar]

59. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996;271:C1424–C1437. [PubMed] [Google Scholar]

60. Douki H, Cadet J. Peroxynitrite mediated oxidation of purine bases of nucleosides and isolated DNA. Free Rad Res. 1996;24(5):369–380. [PubMed] [Google Scholar]

61. Ischiropoulos H, Al-Mehdi AB. Peroxynitrite mediated oxidative protein modifications. FEBS Lett. 1995;364(3):279–282. [PubMed] [Google Scholar]

62. Czapski G, Goldstein S. The role of the reactions of NO with superoxide and oxygen in biological systems: a kinetic approach. Free Radic Biol Med. 1995;19(6):785–794. [PubMed] [Google Scholar]

63. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–247. [PubMed] [Google Scholar]

64. Starkov AA. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann NY Acad Sci. 2008;1147:37–52. [PMC free article] [PubMed] [Google Scholar]

65. Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell. 2005;122(2):221–233. [PubMed] [Google Scholar]

66. De Duve C, Bauduhuin P. peroxisomes (microbodies and related particles) Physiol Rev. 1966;46:323–357. [PubMed] [Google Scholar]

67. Schrader M, Fahimi HD. Review Peroxisomes and oxidative stress. Biochim Biophys Acta. 2006;1763(12):1755–1766. [PubMed] [Google Scholar]

68. Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull. 1993;49(3):481–493. [PubMed] [Google Scholar]

69. Gross E, Sevier CS, Heldman N, Vitu E, Bentzur M, Kaiser CA, et al. Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proc Nat Acad Sci USA. 2006;103(2):299–304. [PMC free article] [PubMed] [Google Scholar]

70. Droge W. Review Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95. [PubMed] [Google Scholar]

71. Halliwell B, Gutteridge JM. Free radicals in biology and medicine. Midsomer Norton: Oxford University Press; 1999. [Google Scholar]

72. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radical Biol Med. 2002;32(11):1102–1115. [PubMed] [Google Scholar]

73. Barja G. The flux of free radical attack through mitochondrial DNA is related to aging rate. Aging (Milano). 2000;12(5):342–355. [PubMed] [Google Scholar]

74. Hiraku Y, Kawanishi S, Ichinose T, Murata M. The role of iNOS-mediated DNA damage in infection- and asbestos-induced carcinogenesis. Ann NY Acad Sci. 2010;1203:15–22. [PubMed] [Google Scholar]

75. Yermilov V, Rubio J, Ohshima H. Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. FEBS Lett. 1995;376(3):207–210. [PubMed] [Google Scholar]

76. Loeb LA, Preston BD. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet. 1986;20:201–230. [PubMed] [Google Scholar]

77. Hofer T, Badouard C, Bajak E, Ravanat JL, Mattsson A, Cotgreave IA. Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA. Biol Chem. 2005;386(4):333–337. [PubMed] [Google Scholar]

78. Abe T, Tohgi H, Isobe C, Murata T, Sato C. Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer’s disease. J Neurosci Res. 2002;70(3):447–450. [PubMed] [Google Scholar]

79. Kikuchi A, Takeda A, Onodera H, Kimpara T, Hisanaga K, Sato N, et al. Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol Dis. 2002;9(2):244–248. [PubMed] [Google Scholar]

80. Martinet W, de Meyer GR, Herman AG, Kockx MM. Reactive oxygen species induce RNA damage in human atherosclerosis. Eur J Clin Invest. 2004;34(5):323–327. [PubMed] [Google Scholar]

81. Broedbaek K, Poulsen HE, Weimann A, Kom GD, Schwedhelm E, Nielsen P, et al. Urinary excretion of biomarkers of oxidatively damaged DNA and RNA in hereditary hemochromatosis. Free Radical Biol Med. 2009;47(8):1230–1233. [PubMed] [Google Scholar]

82. Tateyama M, Takeda A, Onodera Y, Matsuzaki M, Hasegawa T, Nunomura A, et al. Oxidative stress and predominant Abeta 42 (43) deposition in myopathies with rimmed vacuoles. Acta Neuropathol. 2003;105(6):581–585. [PubMed] [Google Scholar]

83. Siems WG, Grune T, Esterbauer H. 4-Hydroxynonenal formation during ischemia and reperfusion of rat small-intestine. Life Sci. 1995;57(8):785–789. [PubMed] [Google Scholar]

84. Bast A. Oxidative stress and calcium homeostasis. In: Halliwell B, Aruoma OI, editors. DNA and free radicals. London: Ellis Horwood; 1993. pp. 95–108. [Google Scholar]

85. Marnett LJ. Lipid peroxidation—DNA damage by malondialdehyde. Mutat Res. 1999;424(1–2):83–95. [PubMed] [Google Scholar]

86. Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil chem Soc. 1998;75(2):199–212. [Google Scholar]

87. Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 1997;324:1–18. [PMC free article] [PubMed] [Google Scholar]

88. Butterfield DA, Koppal T, Howard B, Subramaniam R, Hall N, Hensley K, et al. Structural and functional changes in proteins induced by free radical-mediated oxidative stress and protective action of the antioxidants N-tert-butyl-alpha-phenylnitrone and vitamin E. Ann N Y Acad Sci. 1998;854:448–462. [PubMed] [Google Scholar]

89. Brodie E, Reed DJ. Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposure to hydroperoxide. Arch Biochem Biophys. 1990;276(1):210–212. [PubMed] [Google Scholar]

90. Pryor WA, Jin X, Squadrito GL. One- and two-electron oxidations of methionine by peroxynitrite. Proc Natl Acad Sci USA. 1994;91(23):11173–11177. [PMC free article] [PubMed] [Google Scholar]

91. Berlett BS, Stadtman E. Protein oxidation in aging, disease, and oxidative stress. J Bio Chem. 1997;272(33):20313–20316. [PubMed] [Google Scholar]

92. Kikugawa K, Kato T, Okamoto Y. Damage of amino acids and proteins induced by nitrogen dioxide, a free radical toxin, in air. Free Rad Biol Med. 1994;16(3):373–382. [PubMed] [Google Scholar]

93. Uchida K, Kawakishi S. 2-oxohistidine as a novel biological marker for oxidatively modified proteins. FEBS Lett. 1993;332(3):208–210. [PubMed] [Google Scholar]

94. Garrison WM. Reaction mechanisms in radiolysis of peptides, polypeptides, and proteins. Chem Rev. 1987;8792:381–398. [Google Scholar]

95. Chevion M, Berenshtein E, Stadtman ER. Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic Res. 2000;33:S99–S108. [PubMed] [Google Scholar]

96. Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, et al. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA. 1991;88(23):10540–10543. [PMC free article] [PubMed] [Google Scholar]

97. Floor E, Wetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem. 1998;7091:268–275. [PubMed] [Google Scholar]

98. Murphy ME, Kehrer JP. Oxidation state of tissue thiol groups and content of protein carbonyl groups in chickens with inherited muscular dystrophy. Biochem J. 1989;260(2):359–364. [PMC free article] [PubMed] [Google Scholar]

99. Garland D, Russell P, Zigler JS. Oxidative modification of lens proteins. Basic Life Sci. 1988;49:347–353. [PubMed] [Google Scholar]

100. Chapman ML, Rubin BR, Gracy RW. Increased carbonyl content of proteins in synovial fluid from patients with rhematoid arthritis. J Rheumatol. 1989;16(1):15–18. [PubMed] [Google Scholar]

101. Jones RH, Hothersall JS. The effect of diabetes and dietary ascorbate supplementation on the oxidative modification of rat lens beta L crystallin. Biochem Med Metab Biol. 1993;50(2):197–209. [PubMed] [Google Scholar]

102. Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER. Age-related changes in oxidized proteins. J Biol Chem. 1987;262(12):5488–5491. [PubMed] [Google Scholar]

103. Gavin JR, Alberti KGMM, Davidson MB, DeFronzo RA, Drash A, Gabbe SG, et al. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20:1183–1197. [PubMed] [Google Scholar]

104. Oberley LW. Free radicals and diabetes. Free Radic Biol Med. 1988;5(2):113–124. [PubMed] [Google Scholar]

105. Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev. 2009;89(1):27–71. [PubMed] [Google Scholar]

106. Ahmed RG. The physiological and biochemical Effects of diabetes on the balance between oxidative stress and Antioxidant defense system. Med J Islam World Acad Sci. 2005;15(1):31–42. [Google Scholar]

107. Kwong LK, Sohal RS. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch Biochem Biophys. 1998;350(1):118–126. [PubMed] [Google Scholar]

109. Pollack M, Leeuwenburgh C. Molecular mechanisms of oxidative stress in aging: free radicals, aging, antioxidants and disease. Elsevier Science B.V. Handbook of Oxidants and Antioxidants in Exercise. 1999;881–923.

110. Rivas-Arancibia S, Guevara-Guzmán R, López-Vidal Y, Rodríguez-Martínez E, Zanardo-Gomes M, Angoa-Pérez M, et al. Oxidative stress caused by ozone exposure induces loss of brain repair in the hippocampus of adult rats. Toxicol Sci. 2010;113(1):187–197. [PubMed] [Google Scholar]

111. Santiago-López JA, Bautista-Martínez CI, Reyes-Hernandez M, Aguilar-Martínez S, Rivas- Arancibia S. Oxidative stress, progressive damage in the substantia nigra and plasma dopamine oxidation, in rats chronically exposed to ozone. Toxicol Lett. 2010;197(3):193–200. [PubMed] [Google Scholar]

112. Pan XD, Zhu YG, Lin N, Zhang J, Ye QY, Huang HP, Chen XC. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer’s disease. Mol Neurodegener. 2011;6(45):1–17. [PMC free article] [PubMed] [Google Scholar]

113. Sevcsik E, Trexler AJ, Dunn JM, Rhoades E. Allostery in a disordered protein: oxidative modifications to α-synuclein act distally to regulate membrane binding. J Am Chem Soc. 2011;133(18):7152–7158. [PMC free article] [PubMed] [Google Scholar]

114. Zhao W, Varghese M, Yemul S, Pan Y, Cheng A, Marano P, et al. Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener. 2011;6(1):1–8. [PMC free article] [PubMed] [Google Scholar]

115. Witherick J, Wilkins A, Scolding N, Kemp K. Mechanisms of oxidative damage in multiple sclerosis and a cell therapy approach to treatment. Autoimmune Dis. 2010;1–11. [PMC free article] [PubMed]

116. Fisher LJ, Gage FH. Radical directions in Parkinson’s disease. Nat Med. 1995;1(3):201–203. [PubMed] [Google Scholar]

117. Olivieri S, Conti A, Iannaccone S, Cannistraci CV, Campanella A, Barbariga M, et al. Ceruloplasmin oxidation, a feature of Parkinson’s disease CSF, inhibits ferroxidase activity and promotes cellular iron retention. J Neurosci. 2011;31:18568–18577. [PMC free article] [PubMed] [Google Scholar]

118. Butterfield DA, Perluigi M, Sultana R. Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol. 2006;545(1):39–50. [PubMed] [Google Scholar]

119. Chang Y, Kong Q, Shan X, Tian G, Ilieva H, Cleveland DW, et al. Messenger RNA oxidation occurs early in disease pathogenesis and promotes motor neuron degeneration in ALS. PLoS ONE. 2008;3(8):1–19. [PMC free article] [PubMed] [Google Scholar]

120. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases. A Review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7(1):65–74. [PMC free article] [PubMed] [Google Scholar]

121. Gonsette RE. Neurodegeneration in multiple sclerosis: the role of oxidative stress and excitotoxicity. J Neurol Sci. 2008;274(1–2):48–53. [PubMed] [Google Scholar]

122. Mitosek-Szewczyk K, Gordon-Krajcer W, Walendzik P, Stelmasiak Z. Free radical peroxidation products in cerebrospinal fluid and serum of patients with multiple sclerosis after glucocorticoid therapy. Folia Neuropathol. 2010;48(2):116–122. [PubMed] [Google Scholar]

123. Goldstein BD, Witz G. Free radicals and carcinogenesis. Free Radic Res Commum. 1990;11(1–3):3–10. [PubMed] [Google Scholar]

124. Dreher D, Junod AF. Role of oxygen free radicals in cancer development. Eur J Cancer. 1996;32A(1):30–38. [PubMed] [Google Scholar]

125. Acuna UM, Wittwer J, Ayers S, Pearce CJ, Oberlies NH, De Blanco EJ. Effects of (5Z)-7-Oxozeaenol on the Oxidative pathway of cancer cells. Anticancer Res. 2012;32(7):2665–2671. [PMC free article] [PubMed] [Google Scholar]

126. Cairns RA, Harris I, McCracken S, Mak TW. Cancer cell metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:299–311. [PubMed] [Google Scholar]

127. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal hitological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84. [PubMed] [Google Scholar]

128. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266(1–2):37–56. [PubMed] [Google Scholar]

129. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. [PubMed] [Google Scholar]

130. Blau S, Rubinstein A, Bass P, Singaram C, Kohen R. Differences in the reducing power along the rat GI tract: lower antioxidant capacity of the colon. Mol Cell Biochem. 1999;194(1–2):185–191. [PubMed] [Google Scholar]

131. Foksinski M, Rozalski R, Guz J, Ruszkowska B, Sztukowska P, Piwowarski M, et al. Urinary excretion of DNA repair products correlates with metabolic rates as well as with maximum life spans of different mammalian species. Free Radic Biol Med. 2004;37(9):1449–1454. [PubMed] [Google Scholar]

132. Haklar G, Sayin-Ozveri E, Yuksel M, Aktan AO, Yalcin AS. Different kinds of reactive oxygen and nitrogen species were detected in colon and breast tumors. Cancer Lett. 2001;165(2):219–224. [PubMed] [Google Scholar]

133. Guz J, Foksinski M, Siomek A, Gackowski D, Rozalski R, Dziaman T, et al. The relationship between 8-oxo-7,8-dihydro-2-deoxyguanosine level and extent of cytosine methylation in leukocytes DNA of healthy subjects and in patients with colon adenomas and carcinomas. Mutat Res. 2008;640(1–2):170–173. [PubMed] [Google Scholar]

134. Rainis T, Maor I, Lanir A, Shnizer S, Lavy A. Enhanced oxidative stress and leucocyte activation in neoplastic tissues of the colon. Dig Dis Sci. 2007;52(2):526–530. [PubMed] [Google Scholar]

135. Suzuki K, Ito Y, Wakai K, Kawado M, Hashimoto S, Toyoshima H, et al. Serum oxidized low-density lipoprotein levels and risk of colorectal cancer: a case-control study nested in the Japan Collaborative Cohort Study. Cancer Epidemiol Biomark Prev. 2004;13(11):1781–1787. [PubMed] [Google Scholar]

136. Murrell TG. Epidemiological and biochemical support for a theory on the cause and prevention of breast cancer. Med Hypotheses. 1991;36(4):389–396. [PubMed] [Google Scholar]

137. Brown NS, Jones A, Fujiyama C, Harris AL, Bicknell R. Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors. Cancer Res. 2000;60(22):6298–6302. [PubMed] [Google Scholar]

138. Sipe HJ, Jr, Jordan SJ, Hanna PM, Mason RP. The metabolism of 17 beta-estradiol by lactoperoxidase: a possible source of oxidative stress in breast cancer. Carcinogenesis. 1994;15(11):2637–2643. [PubMed] [Google Scholar]

139. Arnold RS, He J, Remo A, Ritsick D, Yin-Goen Q, Lambeth JD, et al. Nox1 expression determines cellular reactive oxygen and modulates c-fos-induced growth factor, interleukin-8, and Cav-1. Am J Pathol. 2007;171(6):2021–2032. [PMC free article] [PubMed] [Google Scholar]

140. Lim SD, Sun C, Lambeth JD, Marshall F, Amin M, Chung L, et al. Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate. 2005;62(2):200–207. [PubMed] [Google Scholar]

141. Brar SS, Corbin Z, Kennedy TP, Hemendinger R, Thornton L, Bommarius B, et al. NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. Am J Physiol Cell Physiol. 2003;285(2):C353–C369. [PubMed] [Google Scholar]

142. Kumar B, Koul S, Khandrika L, Measchan RB, Koul HK. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res. 2008;68:1777–1785. [PubMed] [Google Scholar]

143. Veeramani S, Yuan TC, Lin FF, Lin MF. Mitochondrial redox signaling by p66Shc in involved in regulating androgenic growth stimulation of human prostate cancer cell. Oncogene. 2008;27(37):5057–5068. [PMC free article] [PubMed] [Google Scholar]

144. WHO World cancer Report 2008. In: Boyle P, Levin B, editors. Lung cancer, 12. Chapter 5.10.

145. Azad N, Rojanasakul Y, Vallyathan V. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health. 2008;11(1):1–15. [PubMed] [Google Scholar]

146. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. [PubMed] [Google Scholar]

147. Hoagland LF 4th, Campa MJ, Gottlin EB, Herndon 2nd JE, Patz Jr EF. Haptoglobin and posttranslational glycan-modified derivatives as serum biomarkers for the diagnosis of nonsmall cell lung cancer. Cancer. 2007;110(10):2260–2268. [PubMed]

148. Pastora MD, Nogala A, Molina-Pineloa S, Meléndeza R, Salinasa A, González De la Penaa M, et al. Identification of proteomic signatures associated with lung cancer and COPD. J Proteomics. 2013;89:227–237. [PubMed] [Google Scholar]

149. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics. CA Cancer J Clin. 2007;57:43–46. [PubMed] [Google Scholar]

150. Wynder EL, Goldsmith R. The epidemiology of bladder cancer: a second look. Cancer. 1977;40:1246–1268. [PubMed] [Google Scholar]

151. Opanuraks J, Boonla C, Saelim C, Kittikowit W, Sumpatanukul P, Honglertsakula C, et al. Elevated urinary total sialic acid and increased oxidative stress in patients with bladder cancer. Asian Biomedicine. 2010;4(5):703–710. [Google Scholar]

152. Opanuraks J, Boonla C, Saelim C, Kittikowit W, Sumpatanukul P, Honglertsakula C, Tosukhowong P. Elevated urinary total sialic acid and increased oxidative stress in patients with bladder cancer. Asian Biomedicine. 2010;4(5):703–710. [Google Scholar]

153. Soini Y, Haapasaari KM, Vaarala MH, Turpeenniemi-Hujanen T, Karja V, Karihtala P. 8-hydroxydeguanosine and nitrotyrosine are prognostic factors in urinary bladder carcinoma. Int J Clin Exp Pathol. 2011;4(3):267–275. [PMC free article] [PubMed] [Google Scholar]

154. Eijan AM, Piccardo I, Riveros MD, Sandes EO, Porcella H, Jasnis MA, et al. Nitric oxide in patients with transitional bladder cancer. J Surg Oncol. 2002;81:203–208. [PubMed] [Google Scholar]

155. Gecit I, Aslan M, Gunes M, Pirincci N, Esen R, Demir H, et al. Serum prolidase activity, oxidative stress, and nitric oxide levels in patients with bladder cancer. J Cancer Res Clin Oncol. 2012;138(5):739–743. [PMC free article] [PubMed] [Google Scholar]

156. Ellidag HY, Eren E, Aydın O, Akgol E, Yalcınkaya S, Sezer C, et al. Ischemia Modified Albumin Levels and Oxidative Stress in Patients with Bladder Cancer. Asian Pacific J Cancer Prev. 2013;14(5):2759–2763. [PubMed] [Google Scholar]

157. Yılmaz IA, Akçay T, Çakatay U, Telci A, Ataus S, Yalcin V. Relation between bladder cancer and protein oxidation. ˙ Int Urol Nephrol. 2003;35(3):345–350. [PubMed] [Google Scholar]

158. DeMarchi E, B Faldassari, Bononi A, Wieckowski MR, Pinton P. Oxidative Stress in Cardiovascular Diseases and Obesity: Role of p66Shc and Protein Kinase C Oxidative Medicine and Cellular Longevity. 2013;1-11. Review. [PMC free article] [PubMed]

159. Yin Y, Pastrana JL, Li X, Huang X, Mallilankaraman K, Choi ET, et al. Inflammasomes: sensors of metabolic stresses for vascular inflammation. Front Biosci. 2013;18:638–649. [PMC free article] [PubMed] [Google Scholar]

160. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340(2):115–126. [PubMed] [Google Scholar]

161. Papaharalambus CA, Griendling KK. Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med. 2007;17(2):48–54. [PMC free article] [PubMed] [Google Scholar]

162. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest. 1996;98(11):2572–2579. [PMC free article] [PubMed] [Google Scholar]

163. Barnoya J, Glantz SA. Cardiovascular effects of secondhand smoke: nearly as large as smoking. Circulation. 2005;111(20):2684–2698. [PubMed] [Google Scholar]

164. Yang Z, Ming XF. Recent advances in understanding endothelial dysfunction in atherosclerosis. Clin Med Res. 2006;4(1):53–65. [PMC free article] [PubMed] [Google Scholar]

165. Botto N, Rizza A, Colombo MG, Mazzone AM, Manfredi S, Masetti S, et al. Evidence for DNA damage in patients with coronary artery disease. Mutat Res. 2001;493(1–2):23–30. [PubMed] [Google Scholar]

166. Ding Z, Liu S, Wang X, Khaidakov M, Dai Y, Mehta JL. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis. Sci Rep. 2013;3:1–6. [PMC free article] [PubMed] [Google Scholar]

167. Mercer JR, Cheng KK, Figg N, Gorenne I, Mahmoudi M, Griffin J, et al. DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome novelty and significance. Circ Res. 2010;107:1021–1031. [PMC free article] [PubMed] [Google Scholar]

168. A global brief on hypertension. World health day 2013. WHO.

169. Zalba G, Jose GS, Moreno MU, Fortuno MA, Fortuno A, Beaumont FJ, et al. Oxidative stress in arterial hypertension role of NAD(P)H oxidase. Hypertension. 2001;38(6):1395–1399. [PubMed] [Google Scholar]

170. Dzau VJ. Tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension. 2001;37:1047–1052. [PubMed] [Google Scholar]

171. Touyz RM. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension. 2004;44(3):248–252. [PubMed] [Google Scholar]

172. Touyz RM. Reactive oxygen species and angiotensin II signaling in vascular cells: implications in cardiovascular disease. Braz J Med Biol Res. 2004;37(8):1263–1273. [PubMed] [Google Scholar]

173. Hashim Z, Zarina S. Osmotic stress induced oxidative damage: Possible mechanism of cataract formation in diabetes. J Diabetes Complicat. 2012;26(4):275–279. [PubMed] [Google Scholar]

174. Thylefors B, Negrel AD, Pararajasegaram R, Dadzie KY. Global data on blindness. Bull World Health Organ. 1995;73(1):115–121. [PMC free article] [PubMed] [Google Scholar]

175. Nagai N, Fukuhata T, Ito Y. Effect of magnesium deficiency on intracellular ATP Levels in human lens epithelial cells. Biol Pharm Bull. 2007;30(1):6–10. [PubMed] [Google Scholar]

176. Beebe DC, Holekamp NM, Shui YB. Oxidative damage and the prevention of age-related cataracts. Ophthalmic Res. 2010;44(3):155–165. [PMC free article] [PubMed] [Google Scholar]

177. Berthoud VM, Beyer EC. Forum review article oxidative stress, lens gap junctions, and cataracts. Antioxid Redox Signal. 2009;11(2):339–353. [PMC free article] [PubMed] [Google Scholar]

178. Bhuyan KC, Bhuyan DK, Podos SM. Lipid peroxidation in cataract of the human. Life Sci. 1986;38(16):1463–1471. [PubMed] [Google Scholar]

179. Gupta SK, Trivedi D, Srivastava S, Joshi S, Halder N, Verma SD. Lycopene attenuates oxidative stress induced experimental cataract development: an in vitro and in vivo study. Nutrition. 2003;19(9):794–799. [PubMed] [Google Scholar]

180. Boettner EH, Walter JR. Transmission of the ocular media. GPO Invest Ophthalmol Vis Sci. 1962;1:776–783. [Google Scholar]

181. Krishna CM, Uppuluri S, Riesz P, Zigler JS, Jr, Balasubramian D. A study of the photodynamic efficiencies of some eye lens constituents. Photochem Photobiol. 1991;54(1):51–58. [PubMed] [Google Scholar]

182. Dilsiz N, Olcucu A, Atas M. Determination of calcium, sodium, potassium and magnesium concentrations in human senile cataractous lenses. Cell Biochem Funct. 2000;18(4):259–262. [PubMed] [Google Scholar]

183. David LL, Azuma M, Shearer TR. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens. Invest Ophthalmol Vis Sci. 1994;35(3):785–793. [PubMed] [Google Scholar]

184. Spector A, Garner WH. Hydrogen peroxide and human cataract. Exp Eye Res. 1981;33(6):673–681. [PubMed] [Google Scholar]

185. Hapeta B, Koczy B, Fitowska A, Dobrakowski M, Kasperczyk A, Ostałowska A, et al. Metabolism and protein transformations in synovial membrane of a knee joint in the course of rheumatoid arthritis and degenerative arthritis. Pol Orthop Traumatol. 2012;77:53–58. [PubMed] [Google Scholar]

186. Stamp LK, Khalilova I, Tarr JM, Senthilmohan R, Turner R, Haigh RC, et al. Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology (Oxford) 2012;51(10):1796–1803. [PubMed] [Google Scholar]

187. Desai PB, Manjunath S, Kadi S, Chetana K, Vanishree J. Oxidative stress and enzymatic antioxidant status in rheumatoid arthritis: a case control study. Eur Rev Med Pharmacol Sci. 2010;14(11):959–967. [PubMed] [Google Scholar]

188. Grover HS, Gaba N, Gupta A, Marya CM. Rheumatoid arthritis: a review and dental care considerations. Nepal Med Coll J. 2011;13(2):74–76. [PubMed] [Google Scholar]

189. De Pablo P, Dietrich T, McAlindon TE. Association of periodontal disease and tooth loss with rheumatoid arthritis in the US population. J Rheumatol. 2008;35(1):70–76. [PubMed] [Google Scholar]

190. Vasanthi P, Nalini G, Rajasekhar G. Status of oxidative stress in rheumatoid arthritis. Int J Rheum Dis. 2009;12(1):29–33. [PubMed] [Google Scholar]

191. Hitchon CA, El-Gabalawy HS. Review Oxidation in rheumatoid arthritis. Arthritis Res Ther. 2004;6(6):265–278. [PMC free article] [PubMed] [Google Scholar]

192. Grootveld M, Henderson EB, Farell A, Blake DR, Parkes HG, Haycock P. Oxidative damage to hyaluronate and glucose in synovial fluid during exercise of the inflamed rheumatoid joint. Detection of abnormal lowmolecular-mass metabolites by proton-n.m.r. spectroscopy. Biochem J. 1991;273:459–467. [PMC free article] [PubMed] [Google Scholar]

193. Rowley D, Gutteridge JM, Blake D, Farr M, Halliwell B. Lipid peroxidation in rheumatoid arthritis: thiobarbituric acid-reactive material and catalytic iron salts in synovial fluid from rheumatoid patients. Clin Sci (London). 1984;66(6):691–695. [PubMed] [Google Scholar]

194. Dai L, Lamb DJ, Leake DS. Evidence for oxidized low density lipoprotein in synovial fluid from rheumatoid arthritis patients. Free Radic Res. 2000;32(6):479–486. [PubMed] [Google Scholar]

195. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329(1–2):23–38. [PubMed] [Google Scholar]

196. Dai L, Lamb DJ, Leake DS, Kus ML, Jones HW, Morris CJ, et al. Evidence for oxidised low density lipoprotein in synovial fluid from rheumatoid arthritis patients. Free Radic Res. 2000;32(6):479–486. [PubMed] [Google Scholar]

197. Costenbader KH, Karlson EW. Cigarette smoking and autoimmune disease: what can we learn from epidemiology? Lupus. 2006;15(11):737–745. [PubMed] [Google Scholar]

198. Kottova M, Pourova J, Voprsalova M. Oxidative stress and its role in respiratory diseases. Ceska Slov Farm. 2007;56(5):215–219. [PubMed] [Google Scholar]

199. Masoli M, Fabian D, Holt S, Beasley R. The global burden of asthma: Executive summary of the GINA Dissemination Committee report. Allergy. 2004;59(5):469–478. [PubMed] [Google Scholar]

200. Chung KF. Role of inflammation in the hyper reactivity of the airways in asthma. Thorax. 1986;41:657–662. [PMC free article] [PubMed] [Google Scholar]

201. Barnes PJ. Reactive oxygen species and airway inflammation. Free Radic Biol Med. 1990;9(3):235–243. [PubMed] [Google Scholar]

202. Xiao M, Zhu T, Wang T, Wen FQ. Hydrogen-rich saline reduces airway remodeling via inactivation of NF-κB in a murine model of asthma. Eur Rev Med Pharmacol Sci. 2013;17(8):1033–1043. [PubMed] [Google Scholar]

203. Tohyama Y, Kanazawa H, Fujiwara F, Hirata K, Fujimoto S, Yoshikawa J. Role of nitric oxide on airway microvascular permeability in patients with asthma. Osaka City Med J. 2005;51(1):1–9. [PubMed] [Google Scholar]

204. Rahman I, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol. 2006;533(1–3):222–239. [PubMed] [Google Scholar]

205. Terada LS. Specificity in reactive oxidant signaling: Think globally, act locally. J Cell Biol. 2006;174(5):615–623. [PMC free article] [PubMed] [Google Scholar]

206. Fujisawa T. Role of oxygen radicals on bronchial asthma. Curr Drug Targets Inflamm Allergy. 2005;4(4):505–509. [PubMed] [Google Scholar]

207. Ozaras R, Tahan V, Turkmen S, Talay F, Besirli K, Aydin S, et al. Changes in malondialdehyde levels in bronchoalveolar fluid and serum by the treatment of asthma with inhaled steroid and beta2-agonist. Respirology. 2000;5(3):289–292. [PubMed] [Google Scholar]

208. Ahmad A, Shameem M, Husain Q. Relation of oxidant-antioxidant imbalance with disease progression in patients with asthma. Ann Thorac Med. 2012;7(4):226–232. [PMC free article] [PubMed] [Google Scholar]

209. Pobed’onna HP. Antioxidant protection, metabolites of nitrogen oxide on the forming of oxidative stress in patients with bronchial asthma. Lik Sprava. 2005;(5–6):36–40. [PubMed]

How are free radicals generated?

Free radicals can be produced from non-enzymatic reactions of oxygen with organic compounds as well as those initiated by ionizing radiations. The nonenzymatic process can also occur during oxidative phosphorylation (i.e. aerobic respiration) in the mitochondria (4, 5, 8).

Do free radicals bind molecules together?

Conclusion. Free radicals are atoms or groups of atoms with free and single electrons orbit atoms or molecules. These molecules help to bind atoms together as they are attracted to each other .

Which of the following can generate free radicals?

Substances that generate free radicals can be found in the food we eat, the medicines we take, the air we breathe and the water we drink, according to the Huntington's Outreach Project for Education at Stanford University. These substances include fried foods, alcohol, tobacco smoke, pesticides and air pollutants.

What causes a free radical or oxygen species to be formed?

Production of free radicals in the human body Free radicals and other ROS are derived either from normal essential metabolic processes in the human body or from external sources such as exposure to X-rays, ozone, cigarette smoking, air pollutants, and industrial chemicals.