Depolarization of the atria corresponds to the ekg\s

Cardiac Cycle - Atrial Contraction (Phase 1)

Depolarization of the atria corresponds to the ekgs

A-V Valves Open; Semilunar Valves Closed

  • This is the first phase of the cardiac cycle. It is initiated by the P wave of the electrocardiogram (ECG), which represents electrical depolarization of the atria. Atrial depolarization initiates contraction of the atrial musculature. As the atria contract, the pressure within the atrial chambers increases, which forces more blood flow across the open atrioventricular (AV) valves, leading to a rapid flow of blood into the ventricles. Blood does not flow back into the vena cava because of inertial effects of the venous return and because the wave of contraction through the atria moves toward the AV valve thereby having a "milking effect." However, atrial contraction does produce a small increase in venous pressure that can be noted as the "a-wave" of the left atrial pressure (LAP).  Just following the peak of the a-wave is the x-descent.
  • Atrial contraction normally accounts for about 10% of left ventricular filling when a person is at rest because most of ventricular filling occurs prior to atrial contraction as blood passively flows from the pulmonary veins, into the left atrium, then into the left ventricle through the open mitral valve.
    At high heart rates when there is less time for passive ventricular filling, the atrial contraction may account for up to 40% of ventricular filling. This is sometimes referred to as the "atrial kick." The atrial contribution to ventricular filling varies inversely with duration of ventricular diastole and directly with atrial contractility. 
    Depolarization of the atria corresponds to the ekgs
  • After atrial contraction is complete, the atrial pressure begins to fall causing a pressure gradient reversal across the AV valves.  This causes the valves to float upward (pre-position) before closure.  At this time, the ventricular volumes are maximal, which is termed the end-diastolic volume (EDV).  The left ventricular EDV (LVEDV), which is typically about 120 ml, represents the ventricular preload and is associated with end-diastolic pressures of 8-12 mmHg and 3-6 mmHg in the left and right ventricles, respectively.
  • A heart sound is sometimes noted during atrial contraction (fourth heart sound, S4).  This sound is caused by vibration of the ventricular wall during atrial contraction.  Generally, it is noted when the ventricle compliance is reduced ("stiff" ventricle) as occurs in ventricular hypertrophy and in many older individuals.

Jump to other phases:

  • Phase 2 - Isovolumetric Contraction
  • Phase 3 - Rapid Ejection
  • Phase 4 - Reduced Ejection
  • Phase 5 - Isovolumetric Relaxation
  • Phase 6 - Rapid Filling
  • Phase 7 - Reduced Filling

Revised 12/9/16

DISCLAIMER: These materials are for educational purposes only, and are not a source of medical decision-making advice.

Depolarization of the atria corresponds to the ekgs

General Description

Depolarization of the atria corresponds to the ekgs

As the heart undergoes depolarization and repolarization, the electrical currents that are generated spread not only within the heart, but also throughout the body. This electrical activity generated by the heart can be measured by an array of electrodes placed on the body surface. The recorded tracing is called an electrocardiogram (ECG, or EKG). A "typical" ECG tracing is shown to the right. The different waves that comprise the ECG represent the sequence of depolarization and repolarization of the atria and ventricles. The ECG is recorded at a speed of 25 mm/sec (5 large squares/sec), and the voltages are calibrated so that 1 mV = 10 mm (2 large squares) in the vertical direction. Therefore, each small 1-mm square represents 0.04 sec (40 msec) in time and 0.10 mV in voltage. Because the recording speed is standardized, one can calculate the heart rate from the intervals between different waves.

P wave (atrial depolarization)

The P wave represents the wave of depolarization that spreads from the SA node throughout the atria, and is usually 0.08 to 0.10 seconds (80-100 ms) in duration. The brief isoelectric (zero voltage) period after the P wave represents the time in which the impulse is traveling within the AV node (where the conduction velocity is greatly retarded) and the bundle of His. Atrial rate can be calculated by determining the time interval between P waves. Click here to see how atrial rate is calculated.

The period of time from the onset of the P wave to the beginning of the QRS complex is termed the PR interval, which normally ranges from 0.12 to 0.20 seconds in duration. This interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. If the PR interval is >0.20 sec, there is an AV conduction block, which is called a first-degree heart block if each impulse from the atria is still able to be conducted into the ventricles.

QRS complex (ventricular depolarization)

The QRS complex represents ventricular depolarization. Ventricular rate can be calculated by determining the time interval between QRS complexes. Click here to see how ventricular rate is calculated.

Depolarization of the atria corresponds to the ekgs

The duration of the QRS complex is normally 0.06 to 0.10 seconds. This relatively short duration indicates that ventricular depolarization normally occurs very rapidly. If the QRS complex is prolonged (> 0.10 sec), conduction is impaired within the ventricles. This can occur with bundle branch blocks or whenever a ventricular foci (abnormal pacemaker site) becomes the pacemaker driving the ventricle. Such an ectopic foci nearly always results in impulses being conducted over slower pathways within the heart, thereby increasing the time for depolarization and the duration of the QRS complex.

The shape of the QRS complex in the above figure is idealized. In fact, the shape changes depending on which recording electrodes are being used. The shape also changes when there is abnormal conduction of electrical impulses within the ventricles. The figure to the right summarizes the nomenclature used to define the different components of the QRS complex as may occur in different ECG recording leads and/or with abnormal conduction within the ventricles.

ST segment

The isoelectric period (ST segment) following the QRS and ending at the beginning of the T wave is the time at which both ventricles are completely depolarized. This segment roughly corresponds to the plateau phase of the ventricular action potentials. The ST segment is very important in the diagnosis of ventricular ischemia or hypoxia because under those conditions, the ST segment can become either depressed or elevated.

T and U waves

Depolarization of the atria corresponds to the ekgs

The T wave represents ventricular repolarization. Generally, the T wave exhibits a positive deflection. The reason for this is that the last cells to depolarize in the ventricles are the first to repolarize. This occurs because the last cells to depolarize are located in the subepicardial region of the ventricles and these cells have shorter action potentials than found in the subendocardial regions of the ventricular wall. So, although the depolarization of the subepicardial cells occurs after the subendocardial cells, the subepicardial cells undergo phase 3 repolarization before the subendocardial cells. Therefore, repolarization waves generally are oriented opposite of depolarization waves (green versus red arrows in figure), and repolarization waves moving away from a postive recording electrode produce a positive voltage.

The T wave is longer in duration than the QRS complex that represents depolarization. The longer duration occurs because conduction of the repolarization wave is slower than the wave of depolarization. The reason for this is that the repolarization wave does not utilize the high-velocity bundle branch and purkinje system, and therefore primarily relies on cell-to-cell conduction. 

Sometimes a small positive U wave may be seen following the T wave (not shown in figure at top of page). This wave represents the last remnants of ventricular repolarization. Inverted T waves or prominent U waves indicates underlying pathology or conditions affecting repolarization.

QT interval

The QT interval represents the time for both ventricular depolarization and repolarization to occur, and therefore roughly estimates the duration of an average ventricular action potential. This interval can range from 0.20 to 0.40 seconds depending upon heart rate.  At high heart rates, ventricular action potentials shorten in duration, which decreases the QT interval. Because prolonged QT intervals can be diagnostic for susceptibility to certain types of tachyarrhythmias, it is important to determine if a given QT interval is excessively long. In practice, the QT interval is expressed as a "corrected QT (QTc)" by taking the QT interval and dividing it by the square root of the R-R interval (interval between ventricular depolarizations). This allows an assessment of the QT interval that is independent of heart rate.  Normal corrected Q-c intervals are 0.44 seconds or less.

There is no distinctly visible wave representing atrial repolarization in the ECG because it occurs during ventricular depolarization. Because the wave of atrial repolarization is relatively small in amplitude (i.e., has low voltage), it is masked by the much larger ventricular-generated QRS complex.

ECG tracings recorded simultaneous from different electrodes placed on the body produce different characteristic waveforms.  To learn where ECG electrodes are placed, CLICK HERE.

Revised 12/08/19

DISCLAIMER: These materials are for educational purposes only, and are not a source of medical decision-making advice.

What indicates depolarization of the atria on the ECG?

P wave in ECG deflection represents atrial depolarization. Atrial repolarization occurs during ventricular depolarization and is obscured.

What phase of the ECG corresponds with atrial depolarization?

The first wave on an ECG is the P wave, indicating atrial depolarization in which the atria contract (atrial systole ).

Where is depolarization on an ECG?

The QRS complex represents ventricular depolarization. Ventricular rate can be calculated by determining the time interval between QRS complexes.

What is the S wave in QRS?

The S wave is the first downward deflection of the QRS complex that occurs after the R wave. However, a S wave may not be present in all ECG leads in a given patient. Enlarge. In the normal ECG, there is a large S wave in V1 that progressively becomes smaller, to the point that almost no S wave is present in V6.