Disinfecting agents naturally produced by microorganisms are

1. Adair F W, Geftic S G, Gelzer J. Resistance of Pseudomonasto quaternary ammonium compounds. I. Growth in benzalkonium chloride solution. Appl Microbiol. 1969;18:299–302. [PMC free article] [PubMed] [Google Scholar]

2. Adair F W, Geftic S G, Gelzer J. Resistance of Pseudomonas to quaternary ammonium compounds. II. Cross resistance characteristics of a mutant of Pseudomonas aeruginosa. Appl Microbiol. 1971;21:1058–1063. [PMC free article] [PubMed] [Google Scholar]

3. Adler-Storthz K, Sehulster L M, Dreesman G R, Hollinger F B, Melnick J L. Effect of alkaline glutaraldehyde on hepatitis B virus antigens. Eur J Clin Microbiol. 1983;2:316–320. [PubMed] [Google Scholar]

4. Agerton T, Valway S, Gore B, Pozsik C, Plikaytis B, Woodley C, Onorato I. Transmission of a highly drug-resistant strain (strain W1) of Mycobacterium tuberculosis. JAMA. 1997;278:1073–1077. [PubMed] [Google Scholar]

5. Ahonkhai I, Russell A D. Response RP1+ and RP1− strains of Escherichia coli to antibacterial agents and transfer of resistance to Pseudomonas aeruginosa. Curr Microbiol. 1979;3:89–94. [Google Scholar]

6. Alexandre H, Rousseaux I, Charpentier C. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol Lett. 1994;124:17–22. [PubMed] [Google Scholar]

7. Alfa M J, Sitter D L. In-hospital evaluation of orthophthalaldehyde as a high level disinfectant for flexible endoscopes. J Hosp Infect. 1994;26:15–26. [PMC free article] [PubMed] [Google Scholar]

8. Al-Masaudi S B, Day M J, Russell A D. Antimicrobial resistance and gene transfer in Staphylococcus aureus. J Appl Bacteriol. 1991;70:279–290. [PubMed] [Google Scholar]

9. Alqurashi A M, Day M J, Russell A D. Susceptibility of some strains of enterococci and streptococci to antibiotics and biocides. J Antimicrob Chemother. 1996;38:745. [PubMed] [Google Scholar]

10. Anderson R L. Iodophor antiseptics: intrinsic microbial contamination with resistant bacteria. Infect Control Hosp Epidemiol. 1989;10:443–446. [PubMed] [Google Scholar]

11. Anderson R L, Carr J H, Bond W W, Favero M S. Susceptibility of vancomycin-resistant enterococci to environmental disinfectants. Infect Control Hosp Epidemiol. 1997;18:195–199. [PubMed] [Google Scholar]

12. Anderson R L, Holland B W, Carr J K, Bond W W, Favero M S. Effect of disinfectants on pseudomonads colonized on the interior surface of PVC pipes. Am J Public Health. 1990;80:17–21. [PMC free article] [PubMed] [Google Scholar]

13. Anderson R L, Vess R W, Carr J H, Bond W W, Panlilio A L, Favero M S. Investigations of intrinsic Pseudomonas cepaciacontamination in commercially manufactured povidone-iodine. Infect Control Hosp Epidemiol. 1991;12:297–302. [PubMed] [Google Scholar]

14. Anderson R L, Vess R W, Panlilio A L, Favero M S. Prolonged survival of Pseudomonas cepaciain commercially manufactured povidone-iodine. Appl Environ Microbiol. 1990;56:3598–3600. [PMC free article] [PubMed] [Google Scholar]

15. Apostolov K. The effects of iodine on the biological activities of myxoviruses. J Hyg. 1980;84:381–388. [PMC free article] [PubMed] [Google Scholar]

16. Ascenzi J M. Glutaraldehyde-based disinfectants. In: Ascenzi J M, editor. Handbook of disinfectants and antiseptics. New York, N.Y: Marcel Dekker, Inc.; 1996. pp. 111–132. [Google Scholar]

17. Ayliffe G A J, Coates D, Hoffman P N. Chemical disinfection in hospitals. 2nd ed. London, England: Public Health Laboratory; 1993. [Google Scholar]

18. Ayres H, Furr J R, Russell A D. A rapid method of evaluating permeabilizing activity against Pseudomonas aeruginosa. Lett Appl Microbiol. 1993;17:149–151. [Google Scholar]

19. Azachi M, Henis Y, Shapira R, Oren A. The role of the outer membrane in formaldehyde tolerance in Escherichia coli VU3695 and Halomonassp. MAC. Microbiology. 1996;142:1249–1254. [PubMed] [Google Scholar]

20. Baillie L W J, Wade J J, Casewell M W. Chlorhexidine sensitivity of Enterococcus faeciumresistant to vancomycin, high levels of gentamicin, or both. J Hosp Infect. 1992;20:127–128. [PubMed] [Google Scholar]

21. Bailly J-L, Chambron M, Peigue-Lafeuille H, Laveran H, de Champs C, Beytout D. Activity of glutaraldehyde at low concentrations (<2%) against poliovirus and its relevance to gastrointestinal endoscope disinfection procedures. Appl Environ Microbiol. 1991;57:1156–1160. [PMC free article] [PubMed] [Google Scholar]

22. Baldry M G C, Fraser J A L. Disinfection with peroxygens. Crit Rep Appl Chem. 1988;22:91–116. [Google Scholar]

23. Baquero, F., C. Patron, R. Canton, and M. M. Ferrer. 1991. Laboratory and in-vitro testing of skin antiseptics: a prediction for in-vitro activity. J. Hosp. Infect. 18(Suppl. B):5–11. [PubMed]

24. Barett-Bee K, Newboult L, Edwards S. The membrane destabilizing action of the antibacterial agent chlorhexidine. FEMS Microbiol Lett. 1994;119:249–254. [PubMed] [Google Scholar]

25. Barkvoll P, Rolla G. Triclosan protects the skin against dermatitis caused by sodium lauryl sulphate exposure. Clin Periodontol. 1994;21:717–719. [PubMed] [Google Scholar]

26. Barrette W C, Jr, Hannum D M, Wheeler W D, Hurst J K. General mechanism for the bacterial toxicity of hypochlorous acid: abolition of ATP production. Biochemistry. 1989;28:9172–9178. [PubMed] [Google Scholar]

27. Barry C E, III, Mdluli K. Drug sensitivity and environmental adaptation of mycobacterial cell wall components. Trends Microbiol. 1996;4:275–281. [PubMed] [Google Scholar]

28. Bates R C, Schaffer P T B, Sutherland S M. Development of poliovirus having increased resistance to chlorine inactivation. Appl Environ Microbiol. 1977;3:849–853. [PMC free article] [PubMed] [Google Scholar]

29. Bayliss C E, Waites W M, King N R. Resistance and structure of spores of Bacillus subtilis. J Appl Bacteriol. 1981;50:379–390. [Google Scholar]

30. Beaver D J, Roman D P, Stoffel P J. The preparation and bacteriostatic activity of substituted ureas. J Am Chem Soc. 1957;79:1236–1245. [Google Scholar]

31. Behr H, Reverdy M E, Mabilat C, Freney J, Fleurette J. Relation entre le niveau des concentrations minimales inhibitrices de cinq antiseptiques et la présence du gène qacA chez Staphylococcus aureus. Pathol Biol. 1994;42:438–444. [PubMed] [Google Scholar]

32. Belly R T, Kydd G C. Silver resistance in microorganisms. Dev Ind Microbiol. 1982;23:567–577. [Google Scholar]

33. Benarde M A, Snow W B, Olivieri V P, Davidson B. Kinetics and mechanism of bacterial disinfection by chlorine dioxide. Appl Microbiol. 1967;15:257–265. [PMC free article] [PubMed] [Google Scholar]

34. Best M, Springthorpe V S, Sattar S A. Feasibility of a combined carrier test for disinfectants: studies with a mixture of five types of micro-organisms. Am J Infect Control. 1994;22:152–162. [PubMed] [Google Scholar]

35. Beveridge E G, Boyd I, Dew I, Haswell M, Lowe C W G. Electron and light microscopy of damaged bacteria. Soc Appl Bacteriol Tech Ser. 1991;27:135–153. [Google Scholar]

36. Bishai W R, Smith H O, Barcak G J. A peroxide/ascorbate-inducible catalase from Haemophilus influenzae is homologous to the Escherichia coli katEgene product. J Bacteriol. 1994;176:2914–2921. [PMC free article] [PubMed] [Google Scholar]

37. Black J G, Howes D, Rutherford T. Skin deposition and penetration of trichlorocarbanilide. Toxicology. 1975;3:253–264. [PubMed] [Google Scholar]

38. Block S S. Peroxygen compounds. In: Block S S, editor. Disinfection, sterilization, and preservation. 4th ed. Philadelphia, Pa: Lea & Febiger; 1991. pp. 167–181. [Google Scholar]

39. Block S S. Historical review. In: Block S S, editor. Disinfection, sterilization, and preservation. 4th ed. Philadelphia, Pa: Lea & Febiger; 1991. pp. 3–17. [Google Scholar]

40. Block S S. Definitions of terms. In: Block S S, editor. Disinfection, sterilization, and preservation. 4th ed. Philadelphia, Pa: Lea & Febiger; 1991. pp. 18–125. [Google Scholar]

41. Bloomfield S F. The effect of the phenolic antibacterial agent Fentichlor on energy coupling in Staphylococcus aureus. J Appl Bacteriol. 1974;37:117–131. [PubMed] [Google Scholar]

42. Bloomfield S F. Chlorine and iodine formulations. In: Ascenzi J M, editor. Handbook of disinfectants and antiseptics. New York, N.Y: Marcel Dekker, Inc.; 1996. pp. 133–158. [Google Scholar]

43. Bloomfield, S. F. Resistance of bacterial spores to chemical agents. In A. D. Russell, W. B. Hugo, and G. A. J. Ayliffe (ed.), Principles and practice of disinfection, preservation and sterilization, 3rd ed., in press. Blackwell Science, Oxford, England.

44. Bloomfield S F, Arthur M. Interaction of Bacillus subtilisspores with sodium hypochlorite, sodium dichloroisocyanurate and chloramine-T. J Appl Bacteriol. 1992;72:166–172. [PubMed] [Google Scholar]

45. Bloomfield S F, Arthur M. Mechanisms of inactivation and resistance of spores to chemical biocides. J Appl Bacteriol Symp Suppl. 1994;76:91S–104S. [PubMed] [Google Scholar]

46. Bloomfield S F, Smith-Burchnell C A, Dalgleish A G. Evaluation of hypochlorite-releasing disinfectants against the human immunodeficiency virus (HIV) J Hosp Infect. 1990;15:273–278. [PubMed] [Google Scholar]

47. Bobichon H, Bouchet P. Action of chlorhexidine on budding Candida albicans: scanning and transmission electron microscopic study. Mycopathologia. 1987;100:27–35. [PubMed] [Google Scholar]

48. Bradley C R, Fraise A P. Heat and chemical resistance in enterococci. J Hosp Infect. 1996;34:191–196. [PubMed] [Google Scholar]

49. Bragg P D, Rannie D J. The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol. 1974;20:883–889. [PubMed] [Google Scholar]

50. Bridges K, Lowbury E J L. Drug resistance in relation to use of silver sulphadiazine cream in a burn unit. J Clin Pathol. 1977;31:160–164. [PMC free article] [PubMed] [Google Scholar]

51. Broadley S J, Jenkins P A, Furr J R, Russell A D. Antimycobacterial activity of biocides. Lett Appl Microbiol. 1991;13:118–122. [Google Scholar]

52. Broadley S J, Jenkins P A, Furr J R, Russell A D. Potentiation of the effects of chlorhexidine diacetate and cetylpyridinium chloride on mycobacteria by ethambutol. J Med Microbiol. 1995;43:458–460. [PubMed] [Google Scholar]

53. Bronowicki J P, Venard V, Botte C, Monhoven N, Gastin I, Chone L, Hudziak H, Rhin B, Delanoe C, LeFaou A, Bigard M-A, Gaucher P. Patient-to-patient transmission of hepatitis C virus during colonoscopy. N Engl J Med. 1997;337:237–240. [PubMed] [Google Scholar]

54. Brown M R W. The role of the cell envelope in resistance. In: Brown M R W, editor. Resistance of Pseudomonas aeruginosa. Chichester, England: John Wiley & Sons, Ltd.; 1975. pp. 71–99. [Google Scholar]

55. Brown, M. R. W., and R. A. Anderson. 1968. The bactericidal effect of silver ions on Pseudomonas aeruginosa. J. Pharm. Pharmacol. 20(Suppl.):1S–3S. [PubMed]

56. Brown M R W, Collies P J, Gilbert P. Influence of growth rate on susceptibility to antimicrobial agents: modification of the cell envelope and batch and continuous culture studies. Antimicrob Agents Chemother. 1990;34:1623–1628. [PMC free article] [PubMed] [Google Scholar]

57. Brown M R W, Gilbert P. Sensitivity of biofilms to antimicrobial agents. J Appl Bacteriol Symp Suppl. 1993;74:87S–97S. [PubMed] [Google Scholar]

58. Brown M R W, Melling J. Loss of sensitivity to EDTA by Pseudomonas aeruginosagrown under conditions of Mg limitation. J Gen Microbiol. 1969;54:439–444. [PubMed] [Google Scholar]

59. Brown M R W, Williams P. The influence of environment on envelope properties affecting survival of bacteria in infections. Annu Rev Microbial. 1985;39:527–556. [PubMed] [Google Scholar]

60. Brown T A, Smith D G. The effects of silver nitrate on the growth and ultrastructure of the yeast Cryptococcus albidus. Microbios Lett. 1976;3:155–162. [Google Scholar]

61. Broxton P, Woodcock P M, Gilbert P. A study of the antibacterial activity of some polyhexamethylene biguanides towards Escherichia coliATCC 8739. J Appl Bacteriol. 1983;54:345–353. [PubMed] [Google Scholar]

62. Broxton P, Woodcock P M, Gilbert P. Interaction of some polyhexamethylene biguanides and membrane phospholipids in Escherichia coli. J Appl Bacteriol. 1984;57:115–124. [PubMed] [Google Scholar]

63. Broxton P, Woodcock P M, Gilbert P. Injury and recovery of Escherichia coliATCC 8739 from treatment with some polyhexamethylene biguanides. Microbios. 1984;40:187–193. [PubMed] [Google Scholar]

64. Broxton P, Woodcock P M, Gilbert P. Binding of some polyhexamethylene biguanides to the cell envelope of Escherichia coliATCC 8739. Microbios. 1984;41:15–22. [PubMed] [Google Scholar]

65. Bruck C W. Role of glutaraldehyde and other liquid chemical sterilants in the processing of new medical devices. In: Morrissey R F, Prokopenko Y I, editors. Sterilization of medical products. V. Morin Heights, Canada: Polyscience Publications; 1991. pp. 376–396. [Google Scholar]

66. Bruch M K. Chloroxylenol: an old-new antimicrobial. In: Ascenzi J M, editor. Handbook of disinfectants and antiseptics. New York, N.Y: Marcel Dekker, Inc.; 1996. pp. 265–294. [Google Scholar]

67. Bsat N, Chen L, Helmann J D. Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J Bacteriol. 1996;178:6579–6586. [PMC free article] [PubMed] [Google Scholar]

68. Bush L E, Benson L M, White J H. Pig skin as a test substrate for evaluating topical antimicrobial activity. J Clin Microbiol. 1986;24:343–348. [PMC free article] [PubMed] [Google Scholar]

69. Cabral J P S. Mode of antibacterial action of dodine (dodecylguanidine monoacetate) in Pseudomonas syringae. Can J Microbiol. 1991;38:115–123. [PubMed] [Google Scholar]

70. Camper A K, McFeters G A. Chlorine injury and the enumeration of waterborne coliform bacteria. Appl Environ Microbiol. 1979;37:633–641. [PMC free article] [PubMed] [Google Scholar]

71. Candal F J, Eagon R G. Evidence for plasmid-mediated bacterial resistance to industrial biocides. Int Biodeterior Biodegrad. 1984;20:221–224. [Google Scholar]

72. Carson L A, Petersen N J, Favero M S, Aguero S M. Growth characteristics of atypical mycobacteria in water and their comparative resistance to disinfectants. Appl Environ Microbiol. 1978;36:839–846. [PMC free article] [PubMed] [Google Scholar]

73. Caspentier B, Cerf O. Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol. 1993;75:499–511. [PubMed] [Google Scholar]

74. Cassone A, Kerridge D, Gale E F. Ultrastructural changes in the cell wall of Candida albicansfollowing the cessation of growth and their possible relationship to the development of polyene resistance. J Gen Microbiol. 1979;110:339–349. [PubMed] [Google Scholar]

75. Chambon M, Bailly J-L, Peigue-Lafeuille H. Activity of gluteraldehyde at low concentrations against capsid proteins of poliovirus type 1 and echovirus type 25. Appl Environ Microbiol. 1992;58:3517–3521. [PMC free article] [PubMed] [Google Scholar]

76. Chang S L. Modern concept of disinfection. J Sanit Eng Div Proc ASCE. 1971;97:689. [Google Scholar]

77. Chaplin C E. Observations on quaternary ammonium disinfectants. J Bot. 1951;29:373–382. [Google Scholar]

78. Chaplin C E. Bacterial resistance to quaternary ammonium disinfectants. J Bacteriol. 1952;63:453–458. [PMC free article] [PubMed] [Google Scholar]

79. Chawner J A, Gilbert P. A comparative study of the bactericidal and growth inhibitory activities of the bisbiguanides alexidine and chlorhexidine. J Appl Bacteriol. 1989;66:243–252. [PubMed] [Google Scholar]

80. Chawner J A, Gilbert P. Interaction of the bisbiguanides chlorhexidine and alexidine with phospholipid vesicles: evidence for separate modes of action. J Appl Bacteriol. 1989;66:253–258. [PubMed] [Google Scholar]

81. Chesney J, Eaton J W, Mahoney J R., Jr Bacterial glutathione: a sacrificial defense against chlorine compounds. J Bacteriol. 1996;178:2131–2135. [PMC free article] [PubMed] [Google Scholar]

82. Chopra I. Plasmids and bacterial resistance. In: Russell A D, Hugo W B, Ayliffe G A J, editors. Principles and practice of disinfection, preservation and sterilization. Oxford, England: Blackwell Scientific Publications Ltd.; 1982. pp. 199–206. [Google Scholar]

83. Chopra I. Microbial resistance to veterinary disinfectants and antiseptics. In: Linton A H, Hugo W B, Russell A D, editors. Disinfection in veterinary and farm animal practice. Oxford, England: Blackwell Scientific Publications Ltd.; 1987. pp. 43–65. [Google Scholar]

84. Chopra I. Bacterial resistance to disinfectants, antiseptics and toxic metal ions. Soc Appl Bacteriol Tech Ser. 1991;27:45–64. [Google Scholar]

85. Chopra I. Efflux-based antibiotic resistance mechanisms: the evidence for increasing prevalence. J Antimicrob Chemother. 1992;30:737–739. [PubMed] [Google Scholar]

86. Chopra I, Johnson S C, Bennett P M. Inhibition of Providencia stuartiicell envelope enzymes by chlorhexidine. J Antimicrob Chemother. 1987;19:743–751. [PubMed] [Google Scholar]

87. Christensen E A, Kristensen H. Gaseous sterilization. In: Russell A D, Hugo W B, Ayliffe G A J, editors. Principles and practice of disinfection, preservation and sterilization. 2nd ed. Oxford, England: Blackwell Scientific Publications Ltd.; 1991. pp. 557–572. [Google Scholar]

88. Cookson B D. Proceedings of the 7th International Symposium on Staphylococci and Staphlococcal Infections. Stuttgart, Germany: Gustav Fischer Verlag; 1994. Antiseptic resistance in methicillin-resistant Staphylococcus aureus: an emerging problem? pp. 227–234. [Google Scholar]

89. Cookson B D, Bolton M C, Platt J H. Chlorhexidine resistance in Staphylococcus aureusor just an elevated MIC? An in vitro and in vivo assessment. Antimicrob Agents Chemother. 1991;35:1997–2002. [PMC free article] [PubMed] [Google Scholar]

90. Cookson B D, Farrelly H, Palepou M-F, George R. Transferable resistance to triclosan in MRSA. Lancet. 1992;337:1548–1549. [PubMed] [Google Scholar]

91. Cookson, B. D., and I. Phillips. 1988. Epidemic methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 21(Suppl. C):57–65. [PubMed]

92. Corner T R, Joswick H L, Silvernale J N, Gerhardt P. Antimicrobial actions of hexachlorophane: lysis and fixation of bacterial protoplasts. J Bacteriol. 1971;108:501–507. [PMC free article] [PubMed] [Google Scholar]

93. Costerton J D, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G. Biofilms, the customized niche. J Bacteriol. 1994;176:2137–2142. [PMC free article] [PubMed] [Google Scholar]

94. Costerton J W, Cheng K-J, Geesey G G, Ladd T I, Nickel J C, Dasgupta M, Marrie T J. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–464. [PubMed] [Google Scholar]

95. Coulthard C E, Skyes G. Germicidal effect of alcohol. Pharm J. 1936;137:79–81. [Google Scholar]

96. Coward J S, Carr H S, Rosenkranz H S. Silver sulfadiazine effect on the ultrastructure of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1973;3:621–624. [PMC free article] [PubMed] [Google Scholar]

97. Cox A D, Wilkinson S G. Ionizing groups of lipopolysaccharides of Pseudomonas cepaciain relation to antibiotic resistance. Mol Microbiol. 1991;5:641–646. [PubMed] [Google Scholar]

98. Cozens R M, Brown M R W. Effect of nutrient depletion on the sensitivity of Pseudomonas cepaciato antimicrobial agents. J Pharm Sci. 1983;72:1363–1365. [PubMed] [Google Scholar]

99. Croshaw B. The destruction of mycobacteria. In: Hugo W B, editor. Inhibition and destruction of the microbial cell. London, England: Academic Press, Ltd.; 1971. pp. 420–449. [Google Scholar]

100. Crow S. Peracetic acid sterilization: a timely development for a busy healthcare industry. Infect Control Hosp Epidemiol. 1992;13:111–113. [PubMed] [Google Scholar]

101. Dagely S, Dawes E A, Morrison G A. Inhibition of growth of Aerobacter aerogenes: the mode of action of phenols, alcohols, acetone and ethyl acetate. J Bacteriol. 1950;60:369–378. [PMC free article] [PubMed] [Google Scholar]

102. Dance D A B, Pearson A D, Seal D V, Lowes J A. A hospital outbreak caused by a chlorhexidine and antibiotic resistant Proteus mirabilis. J Hosp Infect. 1987;10:10–16. [PubMed] [Google Scholar]

103. Dancer B N, Power E G M, Russell A D. Alkali-reduced revival of Bacillusspores after inactivation by glutaraldehyde. FEMS Microbiol Lett. 1989;57:345–348. [PubMed] [Google Scholar]

104. D’Arcy P F. Inhibition and destruction of moulds and yeats. In: Hugo W B, editor. Inhibition and destruction of the microbial cell. London, England: Academic Press, Ltd.; 1971. pp. 613–686. [Google Scholar]

105. David H L, Rastogi N, Clavel-Sérès S, Clément F, Thorel M-F. Structure of the cell envelope of Mycobacterium avium. Zentbl Bakteriol Mikrobiol Hyg Ser A. 1987;264:49–66. [PubMed] [Google Scholar]

106. David H L, Rastogi N, Clavel-Sérès S, Clément F. Alterations in the outer wall architecture caused by the inhibition of mycoside C biosynthesis in Mycobacterium avium. Curr Microbiol. 1988;17:61–68. [Google Scholar]

107. Davies A, Field B S. Action of biguanides, phenol and detergents on Escherichia coliand its spheroplasts. J Appl Bacteriol. 1969;32:233–243. [PubMed] [Google Scholar]

108. Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science. 1994;264:375–382. [PubMed] [Google Scholar]

109. Davies J G, Babb J R, Bradley C R, Ayliffe G A J. Preliminary study of test methods to assess the virucidal activity of skin disinfectants using poliovirus and bacteriophages. J Hosp Infect. 1993;25:125–131. [PubMed] [Google Scholar]

110. Day, M. J., and A. D. Russell. Antibiotic-resistant cocci. In A. D. Russell, W. B. Hugo, and G. A. J. Ayliffe (ed.), Principles and practice of disinfection, preservation and sterilization, 3rd ed., in press. Blackwell Science, Oxford, England.

111. Dekker J. Development of resistance to modern fungicides and strategies for its avoidance. In: Lyr H, editor. Modern slective fungicides. Harlow, England: Longman; 1987. pp. 39–52. [Google Scholar]

112. Demple B. Regulation of bacterial oxidative stress genes. Annu Rev Genet. 1991;25:315–337. [PubMed] [Google Scholar]

113. Demple B, Halbrook J. Inducible repair of oxidative damage in E. coli. Nature. 1983;304:466–468. [PubMed] [Google Scholar]

114. Demple B, Harrison L. Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem. 1994;63:915–948. [PubMed] [Google Scholar]

115. Dennis W H, Olivieri V P, Kruse C W. The reaction of nucleotides with aqueous hypochlorous acid. Water Res. 1979;13:357–362. [Google Scholar]

116. Dennis W H, Olivieri V P, Kruse C W. Mechanism of disinfection: incorporation of C1-36 into f2 virus. Water Res. 1979;13:363–369. [Google Scholar]

117. De Nobel J G, Dijkers C, Hooijberg E, Klis F M. Increased cell wall porosity in Saccharomyces cerevisiaeafter treatment with dithiothreitol or EDTA. J Gen Microbiol. 1989;135:2077–2084. [Google Scholar]

118. De Nobel J G, Klis F M, Munnik T, Van Den Ende H. An assay of relative cell porosity in Saccharomyces cerevisiae, Kluyveromyces lactis and Schizosaccharomyces pombe. Yeast. 1990;6:483–490. [PubMed] [Google Scholar]

119. De Nobel J G, Klis F M, Priem J, Munnik T, Van Den Ende H. The glucanase-soluble mannoproteins limit cell porosity in Saccharomyces cerevisiae. Yeast. 1990;6:491–499. [PubMed] [Google Scholar]

120. Denyer S P. Mechanisms of action of antibacterial biocides. Int Biodeterior Biodegrad. 1995;36:227–245. [Google Scholar]

121. Denyer S P, Hugo W B. The mode of action of cethyltrimethylammonium bromide (CTAB) on Staphylococcus aureus. J Pharm Pharmacol. 1977;29:66P. [PubMed] [Google Scholar]

122. Denyer S P, Hugo W B. Biocide-induced damage to the cytoplasmic membrane. Soc Appl Bacteriol Tech Ser. 1991;27:171–187. [Google Scholar]

123. Denyer S P, Hugo W B, Harding V D. Synergy in preservative combinations. Int J Pharm. 1985;25:245–253. [Google Scholar]

124. Denyer S P, Hugo W B, Harding V D. The biochemical basis of synergy between the antibacterial agents chlorocresol and 2-phenylethanol. Int J Pharm. 1986;29:29–36. [Google Scholar]

125. Denyer, S. P., S. P. Gorman, and M. Sussman. 1993. Microbial biofilms: formation and control. Soc. Appl. Bacteriol. Tech. Ser. 30.

126. Dodd C E R, Sharman R L, Bloomfield S F, Booth I R, Stewart G S A B. Inimical processes: bacterial self-destruction and sub-lethal injury. Trends Food Sci Technol. 1997;8:238–241. [Google Scholar]

127. Dowds B C, Murphy P, McConnell D J, Devine K M. Relationship among oxidative stress, growth cycle, and sporulation in Bacillus subtilis. J Bacteriol. 1987;169:5771–5775. [PMC free article] [PubMed] [Google Scholar]

128. Dukan S, Touati D. Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J Bacteriol. 1996;178:6145–6150. [PMC free article] [PubMed] [Google Scholar]

129. Dussau J Y, Chapalain J C, Rouby Y, Reverdy M E, Bartoli M. Evaluation par une microméthode de l’activité bactericide de cinq disinfectancts sur 108 souches hospitalières. Pathol Biol. 1993;41:349–357. [PubMed] [Google Scholar]

130. Dychdala G R. Chlorine and chlorine compounds. In: Block S S, editor. Disinfection, sterilization, and preservation. 4th ed. Philadelphia, Pa: Lea & Febiger; 1991. pp. 131–151. [Google Scholar]

131. Dye M, Mead G C. The effect of chlorine on the viability of clostridial spores. J Food Technol. 1972;7:173–181. [Google Scholar]

132. Edgar R, Bibi E. MdfA, and Escherichia colimultidrug resistance protein with an extraordinarily broad spectrum of drug recognition. J Bacteriol. 1997;179:2274–2280. [PMC free article] [PubMed] [Google Scholar]

133. Eklund T, Nes I F. Effects of biocides on DNA, RNA and protein synthesis. Soc Appl Bacteriol Tech Ser. 1991;27:225–234. [Google Scholar]

134. El-Falaha B M A, Russell A D, Furr J R. Sensitivities of wild-type and envelope-defective strains of Escherichia coli and Pseudomonas aeruginosato antibacterial agents. Microbios. 1983;38:99–105. [PubMed] [Google Scholar]

135. El-Falaha B M A, Russell A D, Furr J R. Effect of chlorhexidine diacetate and benzalkonium chloride on the viability of wild-type and envelope mutants of Escherichia coli and Pseudomonas aeruginosa. Lett Appl Microbiol. 1985;1:21–24. [Google Scholar]

136. Elferink J G R. The effect of ethylenediamine tetraacetic acid on yeast cell membranes. Protoplasma. 1974;80:261–268. [PubMed] [Google Scholar]

137. Elferink J G R, Booij H L. Interaction of chlorhexidine with yeast cells. Biochem Pharmacol. 1974;23:1413–1419. [PubMed] [Google Scholar]

138. Ellar D, Munoz J, Salton M R T. The effect of low concentrations of glutaraldehyde on Micrococcus lysodeikticusmembranes. Biochim Biophys Acta. 1971;225:140–150. [PubMed] [Google Scholar]

139. El-Moug T, Rogers D T, Furr J R, El-Falaha B M A, Russell A D. Antiseptic-induced changes in the cell surface of a chlorhexidine-sensitive and a chlorhexidine-resistant strain of Providencia stuartii. J Antimicrob Chemother. 1985;16:685–689. [PubMed] [Google Scholar]

140. Elsmore, R. D. Legionella. In A. D. Russell, W. B. Hugo, and G. A. J. Ayliffe (ed.), Principles and practice of disinfection, preservation and sterilization, 3rd ed., in press. Blackwell Science, Oxford, England.

141. Ernst D R, Race R E. Comparative analysis of scrapie agent inactivation methods. J Virol Methods. 1993;41:193–201. [PubMed] [Google Scholar]

142. Evans D J, Allison D G, Brown M R W, Gilbert P. Growth rate and the resistance of Gram-negative biofilms to cetrimide. J Antimicrob Chemother. 1990;26:473–478. [PubMed] [Google Scholar]

143. Favero M S, Bond W W. Chemical disinfection of medical surgical material. In: Block S S, editor. Disinfection, sterilization, and preservation. 4th ed. Philadelphia, Pa: Lea & Febiger; 1991. pp. 617–641. [Google Scholar]

144. Feron V J, Til H P, de Vrijes F, Wouterson R A, Cassee F R, van Bladeren P J. Aldehydes: occurrence, carcinogenicity potential, mechanism of action and risk assessment. Mutat Res. 1991;259:363–385. [PubMed] [Google Scholar]

145. Fitzgerald K A, Davies A, Russell A D. Uptake of 14C-chlorhexidine diacetate to Escherichia coli and Pseudomonas aeruginosaand its release by azolectin. FEMS Microbiol Lett. 1989;60:327–332. [PubMed] [Google Scholar]

146. Fitzgerald K A, Davies A, Russell A D. Effect of chlorhexidine and phenoxyethanol on cell surface hydrophobicity of Gram-positive and Gram-negative bacteria. Lett Appl Microbiol. 1992;14:91–95. [Google Scholar]

147. Fitzgerald K A, Davies A, Russell A D. Mechanism of ation of chlorhexidine diacetate and phenoxyethanol singly and in combination against Gram-negative bacteria. Microbios. 1992;70:215–230. [PubMed] [Google Scholar]

148. Fitzgerald K A, Davies A, Russell A D. Sensitivity and resistance of Escherichia coli and Staphylococcus aureusto chlorhexidine. Lett Appl Microbiol. 1992;14:33–36. [Google Scholar]

149. Floyd R D, Sharp G, Johnson J D. Inactivation by chlorine of single poliovirus particles in water. Environ Sci Technol. 1979;13:438–442. [Google Scholar]

150. Foegeding P M, Busta F F. Proposed mechanism for sensitization by hypochlorite treatment of Clostridium botulinumspores. Appl Environ Microbiol. 1983;45:1374–1379. [PMC free article] [PubMed] [Google Scholar]

151. Foster S J. The role and regulation of cell wall structural dynamics during differentiation of endoscope-forming bacteria. J Appl Bacteriol Symp Suppl. 1994;76:25S–39S. [PubMed] [Google Scholar]

152. Foster T J. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol Rev. 1983;47:361–409. [PMC free article] [PubMed] [Google Scholar]

153. Fox C L., Jr Topical therapy and the development of silver sulfadiazine. Surg Gynecol Obst. 1983;157:82–88. [PubMed] [Google Scholar]

154. Fox C L, Jr, Modak S M. Mechanism of silver sulfadiazine action on burn wound infections. Antimicrob Agents Chemother. 1974;5:582–588. [PMC free article] [PubMed] [Google Scholar]

155. Fraenkel-Conrat H. Chemical modification of viral ribonucleic acid (RNA). Alkylating agents. Biochim Biophys Acta. 1961;49:169–180. [PubMed] [Google Scholar]

156. Fraenkel-Conrat H, Cooper M, Olcott H S. The reaction of formaldehyde with proteins. J Am Chem Soc. 1945;67:950–954. [Google Scholar]

157. Fraenkel-Conrat H, Olcott H S. Reaction of formaldehyde with proteins. II. Participation of the guanidyl groups and evidence of cross-linking. J Am Chem Soc. 1946;68:34–37. [PubMed] [Google Scholar]

158. Frederick J F, Corner T R, Gerhardt P. Antimicrobial actions of hexachlorophane: inhibition of respiration in Bacillus megaterium. Antimicrob Agents Chemother. 1974;6:712–721. [PMC free article] [PubMed] [Google Scholar]

159. Fried V A, Novick A. Organic solvents as probes for the structure and function of the bacterial membrane: effects of ethanol on the wild type and on an ethanol-resistant mutant of Escherichia coliK-12. J Bacteriol. 1973;114:239–248. [PMC free article] [PubMed] [Google Scholar]

160. Frier M. Derivatives of 4-amino-quinaldinium and 8-hydroxyquinoline. In: Hugo W B, editor. Inhibition and destruction of the microbial cell. London, England: Academic Press, Ltd.; 1971. pp. 107–120. [Google Scholar]

161. Fuhrmann G F, Rothstein A. The mechanism of the partial inhibition of fermentation in yeast by nickel ions. Biochim Biophys Acta. 1968;163:331–338. [PubMed] [Google Scholar]

162. Fuller S J. Biocide-induced enzyme inhibition. Soc Appl Bacteriol Tech Ser. 1991;27:235–249. [Google Scholar]

163. Furr, J. R. Sensitivity of protozoa to disinfection B. Acanthamoeba and contact lens solutions. In A. D. Russell, W. B. Hugo, and G. A. J. Ayliffe (ed.), Principles and practice of disinfection, preservation and sterilization, 3rd ed., in press. Blackwell Science, Oxford, England.

164. Furr J R, Russell A D, Turner T D, Andrews A. Antibacterial activity of Actisorb Plus, Actisorb and silver nitrate. J Hosp Infect. 1994;27:201–208. [PubMed] [Google Scholar]

165. Gale E F. Nature and development of phenotypic resistance to amphotericin B in Candida albicans. Adv Microb Physiol. 1986;27:277–320. [PubMed] [Google Scholar]

166. Gandhi P A, Sawant A D, Wilson L A, Ahearn D G. Adaptation and growth of Serratia mascescensin contact lens disinfectant solutions containing chlorhexidine gluconate. Appl Environ Microbiol. 1993;59:183–188. [PMC free article] [PubMed] [Google Scholar]

167. Gardner J F, Gray K G. Chlorhexidine. In: Block S S, editor. Disinfection, sterilization, and preservation. 4th ed. Philadelphia, Pa: Lea & Febiger; 1991. pp. 251–270. [Google Scholar]

168. George A M. Multidrug resistance in enteric and other Gram-negative bacteria. FEMS Microbiol Lett. 1996;139:1–10. [PubMed] [Google Scholar]

169. Gilbert P. Microbial resistance to preservative systems. In: Bloomfield S F, Baird R, Leak R E, Leech R, editors. Microbial quality assurance in pharmaceuticals, cosmetics and toiletries. Chichester, England: Ellis Horwood; 1988. pp. 171–194. [Google Scholar]

170. Gilbert P, Barber J, Ford J. Interaction of biocides with model membranes and isolated membrane fragments. Soc Appl Bacteriol Tech Ser. 1991;27:155–170. [Google Scholar]

171. Gilbert P, Brown M R W. Some perspectives on preservation and disinfection in the present day. Int Biodeterior Biodegrad. 1995;36:219–226. [Google Scholar]

172. Gilbert P, Collier P J, Brown M R W. Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy and stringent response. Antimicrob Agents Chemother. 1990;34:1865–1868. [PMC free article] [PubMed] [Google Scholar]

173. Gilbert P, Pemberton D, Wilkinson D E. Barrier properties of the Gram-negative cell envelope towards high molecular weight polyhexamethylene biguanides. J Appl Bacteriol. 1990;69:585–592. [PubMed] [Google Scholar]

174. Gilbert P, Pemberton D, Wilkinson D E. Synergism within polyhexamethylene biguanide biocide formulations. J Appl Bacteriol. 1990;69:593–598. [PubMed] [Google Scholar]

175. Gilleland H E, Jr, Stinnett J D, Eagon R G. Ultrastructural and chemical alteration of the cell envelope of Pseudomonas aeruginosa, associated with resistance to ethylenediamine tetraacetate resulting from growth in a Mg2+-deficient medium. J Bacteriol. 1974;117:302–311. [PMC free article] [PubMed] [Google Scholar]

176. Gomez R F, Herrero A A. Chemical preservation of foods. In: Rose A H, editor. Food microbiology. 8. Economic microbiology. London, England: Academic Press, Ltd.; 1983. pp. 77–116. [Google Scholar]

177. Gordon S, Andrew P W. Mycobacterial virulence factors. J Appl Bacteriol Symp Suppl. 1996;81:10S–22S. [PubMed] [Google Scholar]

178. Gorman S P. Microbial adherence and biofilm production. Soc Appl Bacteriol Tech Ser. 1991;27:271–295. [Google Scholar]

179. Gorman S P, Scott E M. Uptake and media reactivity of glutaraldehyde solutions related to structure and biocidal activity. Microbios Lett. 1977;5:163–169. [Google Scholar]

180. Gorman S P, Scott E M, Hutchinson E P. Interaction of the Bacillus subtilisspore protoplast, cortex, ion-exchange and coatless forms with glutaraldehyde. J Appl Bacteriol. 1984;56:95–102. [PubMed] [Google Scholar]

181. Gorman S P, Scott E M, Hutchinson E P. Emergence and development of resistance to antimicrobial chemicals and heat in spores of Bacillus subtilis. J Appl Bacteriol. 1984;57:153–163. [PubMed] [Google Scholar]

182. Gorman S P, Scott E M, Russell A D. Antimicrobial activity, uses and mechanism of action of glutaraldehyde. J Appl Bacteriol. 1980;48:161–190. [PubMed] [Google Scholar]

183. Gottardi, W. 1985. The influence of the chemical behavior of iodine on the germicidal action of disinfectant solutions containing iodine. J. Hosp. Infect. 6(Suppl. A):1–11. [PubMed]

184. Gottardi W. Iodine and iodine compounds. In: Block S S, editor. Disinfection, sterilization, and preservation. 4th ed. Philadelphia, Pa: Lea & Febiger; 1991. pp. 152–166. [Google Scholar]

185. Grant K A, Park S F. Molecular characterization of katA from Campylobacter jejuni and generation of a catalase-deficient mutant of Campylobacter coliby interspecific allelic exchange. Microbiology. 1995;141:1369–1376. [PubMed] [Google Scholar]

186. Gray T B, Curson R T M, Sherwan J F, Rose P R. Acanthamoeba, bacterial and fungal contamination of contact lens storage cases. Br J Ophthalmol. 1995;79:601–605. [PMC free article] [PubMed] [Google Scholar]

187. Griffits P A, Babb J R, Bradley C R, Fraise A P. Glutaraldehyde-resistant Mycobacterium chelonaefrom endoscope washer disinfectants. J Appl Microbiol. 1997;82:519–526. [PubMed] [Google Scholar]

188. Grinius L, Dreguniene G, Goldberg E B, Liao C-H, Projan S J. A staphylococcal multidrug resistance gene product is a member of a new protein family. Plasmid. 1992;27:119–129. [PubMed] [Google Scholar]

189. Grossgebauer K. Virus disinfection. In: Benarde M A, editor. Disinfection. New York, N.Y: Marcel Dekker, Inc.; 1970. pp. 103–148. [Google Scholar]

190. Grossman L, Levine S S, Allison W S. The reaction of formaldehyde with nucleotides and T2 bacteriophage DNA. J Mol Biol. 1961;3:47–60. [PubMed] [Google Scholar]

191. Gump W S. The bis-phenols. In: Block S S, editor. Disinfection, sterilization, and preservation. 4th ed. Philadelphia, Pa: Lea & Febiger; 1977. pp. 252–281. [Google Scholar]

192. Haefeli C, Franklin C, Hardy K. Plasmid-determined silver resistance in Pseudomonas stutzeriisolated from a silver mine. J Bacteriol. 1984;158:389–392. [PMC free article] [PubMed] [Google Scholar]

193. Hall E, Eagon R G. Evidence for plasmid-mediated resistance of Pseudomonas putida to hexahydro-1,3,5-triethyl-s-triazine. Curr Microbiol. 1985;12:17–22. [Google Scholar]

194. Hamilton W A. Membrane-active anti-bacterial compounds. In: Hugo W B, editor. Inhibition and destruction of the microbial cell. London, England: Academic Press, Ltd.; 1971. pp. 77–106. [Google Scholar]

195. Hammond S A, Morgan J R, Russell A D. Comparative susceptibility of hospital isolates of Gram-negative bacteria to antiseptics and disinfectants. J Hosp Infect. 1987;9:255–264. [PubMed] [Google Scholar]

196. Hammond S M, Lambert P A, Rycroft A N. The bacterial cell surface. London, England: Croom Helm; 1984. [Google Scholar]

197. Hancock R E W. Alterations in membrane permeability. Annu Rev Microbiol. 1984;38:237–264. [PubMed] [Google Scholar]

198. Harakeh S. Inactivation of enteroviruses, rotaviruses, bacteriophages by peracetic acid in a municipal sewage effluent. FEMS Microbiol Lett. 1987;23:27–30. [Google Scholar]

199. Harold F M, Baarda J R, Baron C, Abrams A. Dio 9 and chlorhexidine. Inhibition of membrane bound ATPase and of cation transport in Streptococcus faecalis. Biochim Biophys Acta. 1969;183:129–136. [PubMed] [Google Scholar]

200. Hartford O M, Dowds B C. Isolation and characterization of a hydrogen peroxide resistant mutant of Bacillus subtilis. Microbiology. 1994;140:297–304. [PubMed] [Google Scholar]

201. Hector R F. Compounds active against cell walls of medically important fungi. Clin Microbiol Rev. 1993;6:1–21. [PMC free article] [PubMed] [Google Scholar]

202. Heinzel M. The phenomena of resistance to disinfectants and preservatives. In: Payne K R, editor. Industrial biocides. Chichester, England: John Wiley & Sons Ltd.; 1988. pp. 52–67. [Google Scholar]

203. Heir E, Sundheim G, Holck A L. Resistance to quaternary ammonium compounds in Staphylococcusspp. isolated from the food industry and nucleotide sequence of the resistance plasmid pST827. J Appl Bacteriol. 1995;79:149–156. [PubMed] [Google Scholar]

204. Hiom S J, Furr J R, Russell A D, Dickinson J R. Effects of chlorhexidine diacetate on Candida albicans, C. glabrata and Saccharomyces cerevisiae. J Appl Bacteriol. 1992;72:335–340. [PubMed] [Google Scholar]

205. Hiom S J, Furr J R, Russell A D, Dickinson J R. Effects of chlorhexidine diacetate and cetylpyridinium chloride on whole cells and protoplasts of Saccharomyces cerevisiae. Microbios. 1993;74:111–120. [PubMed] [Google Scholar]

206. Hiom S J, Furr J R, Russell A D. Uptake of 14C-chlorohexidine diacetate on by Saccharomyces cerevisiae, Candida albicans and Candida glabrata. Lett Appl Microbiol. 1995;21:20–22. [PubMed] [Google Scholar]

207. Hiom S J, Hann A C, Furr J R, Russell A D. X-ray microanalysis chlorhexidine-treated cells of Saccharomyces cerevisiae. Lett Appl Microbiol. 1995;20:353–356. [PubMed] [Google Scholar]

208. Hiom S J, Furr J R, Russell A D, Hann A C. The possible role of yeast cell walls in modifying cellular response to chlorhexidine diacetate. Cytobios. 1996;86:123–135. [PubMed] [Google Scholar]

209. Hiraishi A, Furunata K, Matsumoto A, Koike K A, Fukuyama M, Tabuchi K. Phenotypic and genetic diversity of chlorine-resistant Methylobacteriumstrains isolated from various environments. Appl Environ Microbiol. 1995;61:2099–2107. [PMC free article] [PubMed] [Google Scholar]

210. Hodges N A, Hanlon G W. Detection and measurement of combined biocide action. Soc Appl Bacteriol Tech Ser. 1991;27:297–310. [Google Scholar]

211. Holton J, Nye P, McDonald V. Efficacy of selected disinfectants vs. Mycobacteria and Cryptosporidium. J Hosp Infect. 1994;27:105–115. [PubMed] [Google Scholar]

212. Hughes R C, Thurman P F. Cross-linking of bacterial cell walls with glutaraldehyde. Biochem J. 1970;119:925–926. [PMC free article] [PubMed] [Google Scholar]

213. Hugo W B. Diamidines. In: Hugo W B, editor. Inhibition and destruction of the microbial cell. London, England: Academic Press, Ltd.; 1971. pp. 121–136. [Google Scholar]

214. Hugo W B. The degradation of preservatives by micro-organisms. Int Biodeterior Biodegrad. 1991;27:185–194. [Google Scholar]

215. Hugo, W. B. Disinfection mechanisms. In A. D. Russell, W. B. Hugo, and G. A. J. Ayliffe (ed.), Principles and practice of disinfection, preservation and sterilization, 3rd ed., in press. Blackwell Science, Oxford, England.

216. Hugo W B, Bloomfield S F. Studies on the mode of action of the phenolic antibacterial agent Fentichlor against Staphylococcus aureus and Escherichia coli. II. The effects of Fentichlor on the bacterial membrane and the cytoplasmic constituents of the cell. J Appl Bacteriol. 1971;34:569–578. [PubMed] [Google Scholar]

217. Hugo W B, Bloomfield S F. Studies on the mode of action of the phenolic antibacterial agent Fentichlor against Staphylococcus aureus and Escherichia coli. III. The effect of Fentichlor on the metabolic activities of Staphylococcus aureus and Escherichia coli. J Appl Bacteriol. 1971;34:579–591. [PubMed] [Google Scholar]

218. Hugo W B, Davidson J R. Effect of cell lipid depletion in Staphylococcus aureus upon its resistance to antimicrobial agents. II. A comparison of the response of normal and lipid depleted cells of S. aureusto antibacterial drugs. Microbios. 1973;8:63–72. [PubMed] [Google Scholar]

219. Hugo W B, Denyer S P. The concentration exponent of disinfectant and preservatives (biocides) Soc Appl Bacteriol Tech Ser. 1987;22:281–291. [Google Scholar]

220. Hugo W B, Franklin I. Cellular lipid and the antistaphylococcal activity of phenols. J Gen Microbiol. 1968;52:365–373. [PubMed] [Google Scholar]

221. Hugo W B, Frier M. Mode of action of the antibacterial compound dequalinium acetate. Appl Microbiol. 1969;17:118–127. [PMC free article] [PubMed] [Google Scholar]

222. Hugo W B, Longworth A R. Some aspects of the mode of action of chlorhexidine. J Pharm Pharmacol. 1964;16:655–662. [PubMed] [Google Scholar]

223. Hugo W B, Longworth A R. Cytological aspects of the mode of action of chlorhexidine. J Pharm Pharmacol. 1965;17:28–32. [PubMed] [Google Scholar]

224. Hugo W B, Longworth A R. The effect of chlorhexidine on the electrophoretic mobility, cytoplasmic content, dehydrogenase activity and cell walls of Escherichia coli and Staphylococcus aureus. J Pharm Pharmacol. 1966;18:569–578. [PubMed] [Google Scholar]

225. Hugo W B, Pallent L J, Grant D J W, Denyer S P, Davies A. Factors contributing to the survival of a strain of Pseudomonas cepaciain chlorhexidine solutions. Lett Appl Microbiol. 1986;2:37–42. [Google Scholar]

226. Hugo, W. B., and A. D. Russell. Types of antimicrobial agents. In A. D. Russell, W. B. Hugo, and G. A. J. Ayliffe (ed.), Principles and practice of disinfection, preservation and sterilization, 3rd ed., in press. Blackwell Science, Oxford, England.

227. Ikeda T, Tazuke S, Bamford C H, Ledwith A. Interaction of a polymeric biguanide with phospholipid membranes. Biochim Biophys Acta. 1984;769:57–66. [PubMed] [Google Scholar]

228. Inderlied C B, Kemper C A, Bermudez L E M. The Mycobacterium aviumcomplex. Clin Microbiol Rev. 1993;6:266–310. [PMC free article] [PubMed] [Google Scholar]

229. Irizarry L, Merlin T, Rupp J, Griffith J. Reduced susceptibility of methicillin-resistant Staphylococcus aureusto cetylpyridinium chloride and chlorhexidine. Chemotherapy. 1996;42:248–252. [PubMed] [Google Scholar]

230. Ismaeel N, El-Moug T, Furr J R, Russell A D. Resistance of Providencia stuartiito chlorhexidine: a consideration of the role of the inner membrane. J Appl Bacteriol. 1986;60:361–367. [PubMed] [Google Scholar]

231. Izatt R M, Christensen J J, Rytting J H. Sites and thermodynamic quantities associated with proton and metal interaction with ribonucleic acid, deoxyribonucleic acid and their constituent bases, nucleosides and nucleotides. Chem Rev. 1971;71:439–471. [PubMed] [Google Scholar]

232. Jarlier V, Nikaido H. Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol. 1990;172:1418–1423. [PMC free article] [PubMed] [Google Scholar]

233. Jarroll E L. Effect of disinfectant on Giardacysts. Crit Rev Environ Control. 1988;18:1–28. [Google Scholar]

234. Jarroll, E. L. Sensitivity of protozoa to disinfection. A. Intestinal protozoa. In A. D. Russell, W. B. Hugo, and G. A. J. Ayliffe (ed.), Principles and practice of disinfection, preservation and sterilization, 3rd ed., in press. Blackwell Science, Oxford, England.

235. Järvinen H J, Temovuo, Huovinen P. In vitro susceptibility of Streptococcus mutansto chlorhexidine and six other antimicrobial agents. Antimicrob Agents Chemother. 1993;37:1158–1159. [PMC free article] [PubMed] [Google Scholar]

236. Jenkinson H F. Germination and resistance defects in spores of a Bacillus subtilismutant lacking a coat polypeptide. J Gen Microbiol. 1981;127:81–91. [Google Scholar]

237. Jenkinson H F, Kay D, Mandelstam J. Temporal dissociation of late events in Bacillus subtilissporulation from expression of genes that determine them. J Bacteriol. 1980;141:793–805. [PMC free article] [PubMed] [Google Scholar]

238. Joly B. La résistance microbienne à l’action des antiseptiques et désinfectants. In: Fleurette J, Freney J, Reverdy M-E, editors. Antisepsie et désinfection. Paris, France: Editions ESKA; 1995. pp. 52–65. [Google Scholar]

239. Jones I G, Midgley M. Expression of a plasmid-borne ethidium resistance determinant from Staphylococcus aureus in Escherichia coli: evidence for an efflux system. FEMS Microbiol Lett. 1985;28:355–358. [Google Scholar]

240. Jones M V, Herd T M, Christie H J. Resistance of Pseudomonas aeruginosato amphoteric and quaternary ammonium biocides. Microbios. 1989;58:49–61. [PubMed] [Google Scholar]

241. Joswick H L, Corner T R, Silvernale J N, Gerhardt P. Antimicrobial actions of hexachlorophane: release of cytoplasmic materials. J Bacteriol. 1971;108:492–500. [PMC free article] [PubMed] [Google Scholar]

242. Judis J. Studies on the mode of action of phenolic disinfectants. I. Release of radioactivity from carbon-14-labelled Escherichia coli. J Pharm Sci. 1962;51:261–265. [PubMed] [Google Scholar]

243. Kanazawa A, Ikeda T, Endo T. A novel approach to mode of action of cationic biocides: morphological effect on antibacterial activity. J Appl Bacteriol. 1995;78:55–60. [PubMed] [Google Scholar]

244. Karabit M S, Juneskans O T, Ludngren P. Studies on the evaluation of preservative efficacy. I. The determination of antimicrobial characteristics of phenol. Acta Pharm Suec. 1985;22:281–290. [PubMed] [Google Scholar]

245. Karabit M S, Juneskans O T, Ludngren P. Studies on the evaluation of preservative efficacy. III. The determination of antimicrobial characteristics of benzalkonium chloride. Int J Pharm. 1988;46:141–147. [Google Scholar]

246. Kaulfers P-M, Karch H, Laufs R. Plasmid-mediated formaldehyde resistance in Serratia marcescens and Escherichia coli: alterations in the cell surface. Zentbl Bakteriol Parasitol Infektionskr Hyg I Abt Orig Reihe A. 1987;226:239–248. [PubMed] [Google Scholar]

247. Kaulfers P-M, Masquardt A. Demonstration of formaldehyde dehydrogenase activity in formaldehyde-resistant Enterobacteriaceae. FEMS Microbiol Lett. 1991;65:335–338. [PubMed] [Google Scholar]

248. Kemp, G. K. (Alcide Corporation). 1998. Personal communication.

249. Keswick B H, Satterwhite T K, Johnson P C, DuPont H L, Secor S L, Bitsura J A, Gary G W, Hoff J C. Inactivation of Norwalk virus in drinking water by chlorine. Appl Environ Microbiol. 1985;50:261–264. [PMC free article] [PubMed] [Google Scholar]

250. Khor S Y, Jegathesan M. Heavy metal and disinfectant resistance in clinical isolates of Gram-negative rods. Southeast Asian J Trop Med Public Health. 1983;14:199–203. [PubMed] [Google Scholar]

251. Khunkitti W, Avery S V, Lloyd D, Furr J R, Russell A D. Effects of biocides on Acanthamoeba castellaniias measured by flow cytometry and plaque assay. J Antimicrob Chemother. 1997;40:227–223. [PubMed] [Google Scholar]

252. Khunkitti, W., A. C. Hann, D. Lloyd, J. R. Furr, and A. D. Russell. Biguanide-induced changes in Acanthamoeba castellanii: an electron microscopic study. J. Appl. Microbiol., in press. [PubMed]

253. Khunkitti W, Lloyd D, Furr J R, Russell A D. The lethal effects of biguanides on cysts and trophozoites of Acanthamoeba castellanii. J Appl Microbiol. 1996;81:73–77. [PubMed] [Google Scholar]

254. Khunkitti W, Lloyd D, Furr J R, Russell A D. Aspects of the mechanisms of action of biguanides on cysts and trophozoites of Acanthamoeba castellanii. J Appl Microbiol. 1997;82:107–114. [PubMed] [Google Scholar]

255. Khunkitti, W., D. Lloyd, J. R. Furr, and A. D. Russell. Acanthamoeba castellanii: growth, encystment, excystment and biocide susceptibility. J. Infect., in press. [PubMed]

256. Kimbrough R D. Review of the toxicity of hexachlorophene, including its neurotoxicity. J Clin Pharmacol. 1973;13:439–451. [PubMed] [Google Scholar]

257. Klein, D., and G. McDonnell. 1998. Unpublished results.

258. Klein M, Deforest A. Antiviral action of germicides. Soap Chem Spec. 1963;39:70–72. [Google Scholar]

259. Klein M, Deforest A. Principles of viral inactivation. In: Block S S, editor. Disinfection, sterilization and preservation. 3rd ed. Philadelphia, Pa: Lea & Febiger; 1983. pp. 422–434. [Google Scholar]

260. Kobayashi H, Tsuzuki M, Koshimizu K, Toyama H, Yoshihara N, Shikata T, Abe K, Mizuno K, Otomo N, Oda T. Susceptibility of hepatitis B virus to disinfectants or heat. J Clin Microbiol. 1984;20:214–216. [PMC free article] [PubMed] [Google Scholar]

261. Knott A G, Russell A D. Effects of chlorhexidine gluconate on the development of spores of Bacillus subtilis. Lett Appl Microbiol. 1995;21:117–120. [PubMed] [Google Scholar]

262. Knott A G, Russell A D, Dancer B N. Development of resistance to biocides during sporulation of Bacillus subtilis. J Appl Bacteriol. 1995;79:492–498. [PubMed] [Google Scholar]

263. Kolawole D O. Resistance mechanisms of mucoid-grown Staphylococcus aureusto the antibacterial action of some disinfectants and antiseptics. FEMS Microbiol Lett. 1984;25:205–209. [Google Scholar]

264. Korich D G, Mead J R, Madore M S, Sinclair N A, Sterling C R. Effects of ozone, chlorine dioxide, chlorine and monochloramine on Cryptosporidium parvumoocyst viability. Appl Environ Microbiol. 1990;56:1423–1428. [PMC free article] [PubMed] [Google Scholar]

265. Kroll R G, Anagnostopoulos G D. Potassium leakage as a lethality index of phenol and the effect of solute and water activity. J Appl Bacteriol. 1981;50:139–147. [Google Scholar]

266. Kroll R G, Patchett R A. Biocide-induced perturbations of cell homeostrasis: intracellular pH, membrane potential and solute transport. Soc Appl Bacteriol Tech Ser. 1991;27:189–202. [Google Scholar]

267. Kruse W C. Proceedings of the National Special Conference on Disinfection. ASCE, Amherst, Mass. 1970. Halogen action on bacteria, viruses and protozoa; pp. 113–137. [Google Scholar]

268. Kulikovsky A, Pankratz H S, Sadoff H L. Ultrastructural and chemical changes in spores of Bacillus cereusafter action of disinfectants. J Appl Bacteriol. 1975;38:39–46. [PubMed] [Google Scholar]

269. Kummerle N, Feucht H H, Kaulfers P M. Plasmid-mediated formaldehyde resistance in Escherichia coli: characterization of resistance gene. Antimicrob Agents Chemother. 1996;40:2276–2279. [PMC free article] [PubMed] [Google Scholar]

270. Kushner D J, Khan S R. Proflavine uptake and release in sensitive and resistant Escherichia coli. J Bacteriol. 1968;96:1103–1114. [PMC free article] [PubMed] [Google Scholar]

271. Kuykendall J R, Bogdanffy M S. Efficiency of DNA-histone crosslinking induced by saturated and unsaturated aldehydes in vitro. Mutat Res. 1992;283:131–136. [PubMed] [Google Scholar]

272. Kuyyakanond T, Quesnel L B. The mechanism of action of chlorhexidine. FEMS Microbiol Lett. 1992;100:211–216. [PubMed] [Google Scholar]

273. Lambert P A, Hammond S M. Potassium fluxes. First indications of membrane damage in microorganisms. Biochem Biophys Res Commun. 1973;54:796–799. [PubMed] [Google Scholar]

274. Langsrud S, Sundheim G. Factors contributing to the survival of poultry associated Pseudomonasspp. exposed to a quaternary ammonium compound. J Appl Microbiol. 1997;82:705–712. [PubMed] [Google Scholar]

275. Lannigan R, Bryan L E. Decreased susceptibility of Serratia mascescensto chlorhexidine related to the inner membrane. J Antimicrob Chemother. 1985;15:559–565. [PubMed] [Google Scholar]

276. Lappin-Scott H M, Costerton J W. Microbial biofilms. Cambridge, England: Cambridge University Press; 1995. [Google Scholar]

277. Larson E L. Antiseptics. 1996. pp. 19–1. –19-7, G1–G17. In R. N. Olmstad (ed.), APIC infection control & applied epidemiology: principles & practices. Mosby-Year Book, Inc., St. Louis, Mo. [Google Scholar]

278. Larson E L, Morton H E. Alcohols. In: Block S S, editor. Disinfection, sterilization, and preservation. 4th ed. Philadelphia, Pa: Lea & Febiger; 1991. pp. 191–203. [Google Scholar]

279. LeChevalier M W, Cawthorn C C, Lee R G. Mechanisms of bacterial survival in chlorinated water supplies. Appl Environ Microbiol. 1988;54:2492–2499. [PMC free article] [PubMed] [Google Scholar]

280. Leelaporn A, Firth N, Paulsen I T, Skurray R A. IS257-mediated cointegration in the evolution of a family of staphylococcal trimethoprim resistance plasmids. J Bacteriol. 1996;178:6070–6073. [PMC free article] [PubMed] [Google Scholar]

281. Leelaporn A, Paulsen I T, Tennent J M, Littlejohn T G, Skurray R A. Multidrug resistance to antiseptics and disinfectants in coagulase-negative staphylococci. J Med Microbiol. 1994;40:214–220. [PubMed] [Google Scholar]

282. Leive L. The barrier function of the Gram-negative envelope. Ann N Y Acad Sci. 1974;235:109–129. [PubMed] [Google Scholar]

283. Lensing H H, Oei H L. Study of the efficiency of disinfectants against antrax spores. Tijdschr Diergeneeskd. 1984;109:557–563. [PubMed] [Google Scholar]

284. Levy S B. Active efflux mechanisms for antimicrobial resistance. Antimicrob Agents Chemother. 1992;36:695–703. [PMC free article] [PubMed] [Google Scholar]

285. Lewis R. Antiseptic resistance in JK and other coryneforms. J Hosp Infect. 1988;11:150–154. [PubMed] [Google Scholar]

286. Leyval C, Arz C, Block J C, Rizet M. Escherichia coliresistance to chlorine after successive chlorinations. Environ Technol Lett. 1984;5:359–364. [Google Scholar]

287. Liau S Y, Read D C, Pugh W J, Furr J R, Russell A D. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol. 1997;25:279–283. [PubMed] [Google Scholar]

288. Littlejohn T G, DiBeradino D, Messerotti L J, Spiers S J, Skurray R A. Structure and evolution of a family of genes encoding antiseptic and disinfectant resistance in Staphylococcus aureus. Gene. 1990;101:59–66. [PubMed] [Google Scholar]

289. Littlejohn T G, Paulsen I T, Gillespie M T, Tennent J M, Midgley M, Jones I G, Purewal A S, Skurray R A. Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiol Lett. 1992;95:259–266. [PubMed] [Google Scholar]

290. Longworth A R. Chlorhexidine. In: Hugo W B, editor. Inhibition and destruction of the microbial cell. London, England: Academic Press, Ltd.; 1971. pp. 95–106. [Google Scholar]

291. Loveless A. Quality aspects of the chemistry and biology of radiomimetic (mutagenic) substances. Nature (London) 1951;167:338–342. [PubMed] [Google Scholar]

292. Lukens, R. J. 1983. Chemistry of fungicidal action. Mol. Biol. Biochem. Biophys. 10.

293. Luria S E. Reactivation of irradiated bacteriophage by transfer of self-reproducing units. Proc Natl Acad Sci USA. 1947;33:253. [PMC free article] [PubMed] [Google Scholar]

294. Lynam P A, Babb J R, Fraise A P. Comparison of the mycobactericidal activity of 2% alkaline glutaraldehyde and ’Nu-Cidex‘ (0.35% peracetic acid) J Hosp Infect. 1995;30:237–239. [PubMed] [Google Scholar]

295. Lyon B R, Skurray R A. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev. 1987;51:88–134. [PMC free article] [PubMed] [Google Scholar]

296. Lyr H. Selectivity in modern fungicides and its basis. In: Lyr H, editor. Modern selective fungicides. Harlow, England: Longman; 1987. pp. 31–58. [Google Scholar]

297. Ma T-H, Harris M M. Review of the genotoxicity of formaldehyde. Mutat Res. 1988;196:37–59. [PubMed] [Google Scholar]

298. Maillard J-Y. Mechanisms of viricidal action. In: Russell A D, Hugo W B, Ayliffe G A J, editors. Principles and practice of disinfection, preservation and sterilization. 3rd ed. 1998. , in press. Blackwell Science, Oxford, England. [Google Scholar]

299. Maillard J-Y, Beggs T S, Day M J, Hudson R A, Russell A D. Effect of biocides on Pseudomonas aeruginosaphage F116. Lett Appl Microbiol. 1993;17:167–170. [Google Scholar]

300. Maillard J-Y, Beggs T S, Day M J, Hudson R A, Russell A D. Effect of biocides on MS2 and K coliphages. Appl Environ Microbiol. 1994;60:2205–2206. [PMC free article] [PubMed] [Google Scholar]

301. Maillard J-Y, Beggs T S, Day M J, Hudson R A, Russell A D. Effects of biocides on the transduction of Pseudomonas aeruginosaPAO by F116 bacteriophage. Lett Appl Microbiol. 1995;21:215–218. [Google Scholar]

302. Maillard J-Y, Beggs T S, Day M J, Hudson R, Russell A D. Electronmicroscopic investigation of the effects of biocides on Pseudomonas aeruginosaPAO bacteriophage F116. J Med Microbiol. 1995;42:415–420. [PubMed] [Google Scholar]

303. Maillard J-Y, Beggs T S, Day M J, Hudson R A, Russell A D. Damage to Pseudomonas aeruginosaPAO1 bacteriophage F116 DNA by biocides. J Appl Bacteriol. 1996;80:540–554. [PubMed] [Google Scholar]

304. Maillard J-Y, Beggs T S, Day M J, Hudson R A, Russell A D. The effect of biocides on proteins of Pseudomonas aeruginosaPAO bacteriophage F116. J Appl Bacteriol. 1996;80:291–295. [PubMed] [Google Scholar]

305. Maillard J-Y, Beggs T S, Day M J, Hudson R A, Russell A D. The use of an automated assay to assess phage survival after a biocidal treatment. J Appl Bacteriol. 1996;80:605–610. [PubMed] [Google Scholar]

306. Maillard J-Y, Hann A C, Beggs T S, Day M J, Hudson R A, Russell A D. Energy dispersive analysis of x-rays study of the distribution of chlorhexidine diacetate and cetylpyridinium chloride on the Pseudomonas aeruginosabacteriophage F116. Lett Appl Microbiol. 1995;20:357–360. [PubMed] [Google Scholar]

307. Maillard J-Y, Russell A D. Viricidal activity and mechanisms of action of biocides. Sci Progr. 1997;80:287–315. [PubMed] [Google Scholar]

308. Malchesky P S. Peracetic acid and its application to medical instrument sterilization. Artif Organs. 1993;17:147–152. [PubMed] [Google Scholar]

309. Manuelidis L. Decontamination of Creutzfeldt-Jakob disease and other transmissible agents. J Neurovirol. 1997;3:62–65. [PubMed] [Google Scholar]

310. Marrie T J, Costerton J W. Prolonged survival of Serratia marcescensin chlorhexidine. Appl Environ Microbiol. 1981;42:1093–1102. [PMC free article] [PubMed] [Google Scholar]

311. Martin T D M. Sensitivity of the genus Proteusto chlorhexidine. J Med Microbiol. 1969;2:101–108. [PubMed] [Google Scholar]

312. Martindale Extra Pharmacopoeia. Silver nitrate. 1993. p. 1412. ; silver sulfadiazine, p. 201. Pharmaceutical Press, London, England. [Google Scholar]

313. Marzulli F N, Bruch M. Antimicrobial soaps: benefits versus risks. In: Maibach H, Aly R, editors. Skin microbiology: relevance to clinical infection. New York, N.Y: Springer-Verlag; 1981. pp. 125–134. [Google Scholar]

314. Mayworm D. Low temperature sterilization revisited. Infect Control Steril Tech. 1998;4:18–35. [Google Scholar]

315. Mbithi J N, Springthorpe V S, Sattar S A. Chemical disinfection of hepatitis: a virus on environmental surfaces. Appl Environ Microbiol. 1990;56:3601–3604. [PMC free article] [PubMed] [Google Scholar]

316. Mbithi J N, Springthorpe V S, Sattar S A, Pacquette M. Bactericidal, virucidal, and mycobactericidal activities of reused alkaline gluteraldehyde in an endoscopy unit. J Clin Microbiol. 1993;31:2988–2995. [PMC free article] [PubMed] [Google Scholar]

317. McClure A R, Gordon J. In vitro evaluation of povidone-iodine and chlorhexidine against methicillin-resistant Staphylococcus aureus. J Hosp Infect. 1992;21:291–299. [PubMed] [Google Scholar]

318. McDonnell, G. 1998. Unpublished results.

319. McDonnell G, Kornberger K, Pretzer D. The healthcare continuum model: topical antimicrobial wash products in healthcare settings, the food industry and the home, June 1997. Washington, D.C: SDA/CTFA; 1997. Antiseptic resistance: a survey of Staphylococcus and Enterococcus. [Google Scholar]

320. McGucken P V, Woodside W. Studies on the mode of action of glutaraldehyde on Escherichia coli. J Appl Bacteriol. 1973;36:419–426. [PubMed] [Google Scholar]

321. McKenna S M, Davies K J A. The inhibition of bacterial growth by hypochlorous acid. Biochem J. 1988;254:685–692. [PMC free article] [PubMed] [Google Scholar]

322. McNeil M R, Brennan P J. Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance: some thoughts and possibilities arising from recent structural information. Res Microbiol. 1991;142:451–463. [PubMed] [Google Scholar]

323. Michele T M, Cronin W A, Graham N M H, Dwyer D M, Pope D S, Harrington S, Chaisson R E, Bishai W R. Transmission of Mycobacterium tuberculosisby a fiberoptic bronchoscope. JAMA. 1997;278:1093–1095. [PubMed] [Google Scholar]

324. Midgley M. The phosphonium ion ion efflux system of Escherichia coli: a relationship to the ethidium efflux system and energetic studies. J Gen Microbiol. 1986;132:3187–3193. [PubMed] [Google Scholar]

325. Midgley M. An efflux system for cationic dyes and related compounds in Escherichia coli. Microbiol Sci. 1987;14:125–127. [PubMed] [Google Scholar]

326. Midgley M. Characteristics of an ethidium efflux system in Enterococcus hirae. FEMS Microbiol Lett. 1994;120:119–124. [PubMed] [Google Scholar]

327. Milhaud P, Balassa G. Biochemical genetics of bacterial sporulation. IV. Sequential development of resistance to chemical and physical agents during sporulation of Bacillus subtilis. Mol Gen Genet. 1973;125:241–250. [PubMed] [Google Scholar]

328. Miller L P. Mechanisms for reaching the site of actin. In: Torgeson D C, editor. Fungicides: an advanced treatise. Vol. 2. New York, N.Y: Academic Press, Inc.; 1969. pp. 1–58. [Google Scholar]

329. Miller L P, McCallan S E A. Toxic action of metal ions to fungus spores. Agric Food Chem. 1957;5:116–122. [Google Scholar]

330. Miller P F, Sulavik M C. Overlaps and parallels in the regulation of intrinsic multiple-antibiotic resistance in Escherichia coli. Mol Microbiol. 1996;21:441–448. [PubMed] [Google Scholar]

331. Misra T K. Bacterial resistance to organic mercury salts and organomercurials. Plasmid. 1992;27:17–28. [PubMed] [Google Scholar]

332. Modak S M, Fox C L., Jr Binding of silver sulfadiazine to the cellular components of Pseudomonas aeruginosa. Biochem Pharmacol. 1973;22:2391–2404. [PubMed] [Google Scholar]

333. Moken M C, McMurry L M, Levy S B. Selection of multiple-antibiotic-resistant (Mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrABloci. Antimicrob Agents Chemother. 1997;41:2770–2772. [PMC free article] [PubMed] [Google Scholar]

334. Moore F C, Perkinson L R. U.S. patent 4,169,123. 1979. [Google Scholar]

335. Morgan R W, Christman M F, Jacobson F S, Storz G, Ames B N. Hydrogen peroxide-inducible proteins in Salmonella typhimuriumoverlap with heat shock and other stress proteins. Proc Natl Acad Sci USA. 1986;83:8059–8063. [PMC free article] [PubMed] [Google Scholar]

336. Morris J G, Jr, Sztein M B, Rice E W, Nataro J P, Losonsky G A, Panigrahi P, Tacket C O, Johnson J A. Vibrio choleraeO1 can assume a chlorine-resistant rugose survival form that is virulent for humans. J Infect Dis. 1996;174:1364–1368. [PubMed] [Google Scholar]

337. Morton H E. Alcohols. In: Bloch S S, editor. Disinfection, sterilization, and preservation. 3rd ed. Philadelphia, Pa: Lea & Febiger; 1983. pp. 225–239. [Google Scholar]

338. Mukhopadhyay S, Schellhorn H E. Identification and characterization of hydrogen peroxide-sensitive mutants of Escherichia coli: genes that require OxyR for expression. J Bacteriol. 1997;179:330–338. [PMC free article] [PubMed] [Google Scholar]

339. Munton T J, Russell A D. Aspects of the action of glutaraldehyde on Escherichia coli. J Appl Bacteriol. 1970;33:410–419. [PubMed] [Google Scholar]

340. Munton T J, Russell A D. Effect of glutaraldehyde on protoplasts of Bacillus megaterium. J Gen Microbiol. 1970;63:367–370. [PubMed] [Google Scholar]

341. Munton T J, Russell A D. Interaction of glutaraldehyde with some micro-organisms. Experientia. 1971;27:109–110. [PubMed] [Google Scholar]

342. Munton T J, Russell A D. Effect of glutaraldehyde on the outer layers of Escherichia coli. J Appl Bacteriol. 1972;35:193–199. [PubMed] [Google Scholar]

343. Munton T J, Russell A D. Effect of glutaraldehyde on cell viability, triphenyltetrazolium reduction, oxygen uptake and β-galactosidase activity in Escherichia coli. Appl Microbiol. 1973;26:508–511. [PMC free article] [PubMed] [Google Scholar]

344. Munton T J, Russell A D. Interaction of glutaraldehyde with spheroplasts of Escherichia coli. J Appl Bacteriol. 1973;36:211–217. [PubMed] [Google Scholar]

345. Musser J M. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev. 1995;8:496–514. [PMC free article] [PubMed] [Google Scholar]

346. Mycock G. Methicillin/antiseptic-resistant Staphylococcus aureus. Lancet. 1985;ii:949–950. [PubMed] [Google Scholar]

347. Myers J A, Allwood M C, Gidley M J, Sanders J K M. The relationship between structure and activity of taurolin. J Appl Bacteriol. 1980;48:89–96. [PubMed] [Google Scholar]

348. Nagai I, Ogase H. Absence of role for plasmids in resistance to multiple disinfectants in three strains of bacteria. J Hosp Infect. 1990;15:149–155. [PubMed] [Google Scholar]

349. Nies D H, Silver S. Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol. 1995;14:186–199. [PubMed] [Google Scholar]

350. Nakajima H, Kobayashi K, Kobayashi M, Asako H, Aono R. Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli. Appl Environ Microbiol. 1995;61:2302–2307. [PMC free article] [PubMed] [Google Scholar]

351. Nakamura H. Acriflavine-binding capacity of Escherichia coliin relation to acriflavine sensitivity and metabolic activity. J Bacteriol. 1966;92:1447–1452. [PMC free article] [PubMed] [Google Scholar]

352. Navarro J M, Monsan P. Étude du mécanisme d’interaction du glutaraldéhyde avec les microorganismes. Ann Microbiol (Inst Pasteur) 1976;127B:295–307. [PubMed] [Google Scholar]

353. Nicholson G, Hudson R A, Chadwick M V, Gaya H. The efficacy of the disinfection of bronchoscopes contaminated in vitro with Mycobacterium tuberculosis and Mycobacterium avium intracellulosein sputum: a comparison of Sactimed-I-Sinald and glutaraldehyde. J Hosp Infect. 1995;29:257–264. [PubMed] [Google Scholar]

354. Nicoletti G, Boghossian V, Gureviteh F, Borland R, Morgenroth P. The antimicrobial activity in vitroof chlorhexidine, a mixture of isothiazolinones (’Kathon‘ CG) and cetyltrimethylammonium bromide (CTAB) J Hosp Infect. 1993;23:87–111. [PubMed] [Google Scholar]

355. Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science. 1994;264:382–388. [PubMed] [Google Scholar]

356. Nikaido H, Kim S-H, Rosenberg E Y. Physical organization of lipids in the cell wall of Mycobacterium chelonae. Mol Microbiol. 1993;8:1025–1030. [PubMed] [Google Scholar]

357. O’Brien R T, Newman J. Structural and compositional changes associated with chlorine inactivation of polioviruses. Appl Environ Microbiol. 1979;38:1034–1039. [PMC free article] [PubMed] [Google Scholar]

358. Ogase H, Nigai I, Kameda K, Kume S, Ono S. Identification and quantitative analysis of degradation products of chlorhexidine with chlorhexidine-resistant bacteria with three-dimensional high performance liquid chromatography. J Appl Bacteriol. 1992;73:71–78. [Google Scholar]

359. Olivieri V P, Kruse C W, Hsu Y C, Griffiths A C, Kawata K. The comparative mode of action of chlorine, bromine, and iodine of f2 bacterial virus. In: Johnson J D, editor. Disinfection-water and wastewater. Ann Arbor, Mich: Ann Arbor Science; 1975. pp. 145–162. [Google Scholar]

360. Pallent L J, Hugo W B, Grant D J W, Davies A. Pseudomonas cepaciaand infections. J Hosp Infect. 1983;4:9–13. [PubMed] [Google Scholar]

361. Park J B, Park N H. Effect of chlorhexidine on the in vitro and in vivoherpes simplex virus infection. Oral Surg. 1989;67:149–153. [PubMed] [Google Scholar]

362. Passagot J, Crance J M, Biziagos E, Laveran H, Agbalika F, Deloince R. Effect of glutaraldehyde on the antigenicity and infectivity of hepatitis A virus. J Virol Methods. 1987;16:21–28. [PubMed] [Google Scholar]

363. Paulsen I T, Brown M H, Dunstan S J, Skurray R A. Molecular characterization of the staphylococcal multidrug resistance export protein QacC. J Bacteriol. 1995;177:2827–2833. [PMC free article] [PubMed] [Google Scholar]

364. Paulsen I T, Brown M H, Littlejohn T G, Mitchell B A, Skurray R A. Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity. Proc Natl Acad Sci USA. 1996;93:3630–3635. [PMC free article] [PubMed] [Google Scholar]

365. Paulsen I T, Littlejohn T G, Radstrom P, Sundstrom L, Skold O, Swedberg G, Skurray R A. The 31 conserved segment of integrons contain a gene associated with multidrug resistance to antiseptics and disinfectants. Antimicrob Agents Chemother. 1993;34:761–768. [PMC free article] [PubMed] [Google Scholar]

366. Paulsen I T, Park J H, Choi P S, Saier M H. A family of gram-negative outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria. FEMS Microbiol Lett. 1997;156:1–8. [PubMed] [Google Scholar]

367. Paulsen I T, Skurray R A, Tam R, Saier M H, Turner R J, Weiner J H, Goldberg E B, Grinius L L. The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol Microbiol. 1996;19:1167–1175. [PubMed] [Google Scholar]

368. Paulsen I T, Skurray R A. Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes—an analysis. Gene. 1993;124:1–11. [PubMed] [Google Scholar]

369. Permana P A, Snapka R M. Aldehyde-induced protein-DNA crosslinks disrupt specific stages of SV40 DNA replication. Carcinogenesis. 1994;15:1031–1036. [PubMed] [Google Scholar]

370. Persino R, Lynch D L. Divalent cation dependent resistance in E. coliLMR-26 to the broad spectrum antimicrobial agent Irgasan. Microbios. 1982;34:41–58. [PubMed] [Google Scholar]

371. Phillips C R. Relative resistance of bacterial spores and vegetative bacteria to disinfectants. Bacteriol Rev. 1952;16:135–138. [Google Scholar]

372. Phillips-Jones M K, Rhodes-Roberts M E. Studies of inhibitors of respiratory electron transport and oxidative phosphorylation. Soc Appl Bacteriol Tech Ser. 1991;27:203–224. [Google Scholar]

373. Pitt T L, Gaston M, Hoffman P N. In vitro susceptibility of hospital isolates in various bacterial genera to chlorhexidine. J Hosp Infect. 1983;4:173–176. [PubMed] [Google Scholar]

374. Power E G M. Aldehydes as biocides. Prog Med Chem. 1995;34:149–201. [Google Scholar]

375. Power E G M, Dancer B N, Russell A D. Emergence of resistance to glutaraldehyde in spores of Bacillus subtilis168. FEMS Microbiol Lett. 1988;50:223–226. [Google Scholar]

376. Power E G M, Dancer B N, Russell A D. Possible mechanisms for the revival of glutaraldehyde-treated spores of Bacillus subtilisNCTC 8236. J Appl Bacteriol. 1989;67:91–98. [PubMed] [Google Scholar]

377. Power E G M, Dancer B N, Russell A D. Effect of sodium hydroxide and two proteases on the revival of aldehyde-treated spores of Bacillus subtilis. Lett Appl Microbiol. 1990;10:9–13. [Google Scholar]

378. Power E G M, Russell A D. Glutaraldehyde: its uptake by sporing and non-sporing bacteria, rubber, plastic and an endoscope. J Appl Bacteriol. 1989;67:329–342. [PubMed] [Google Scholar]

379. Power E G M, Russell A D. Uptake of L-(14C)-alanine to glutaraldehyde-treated and untreated spores of Bacillus subtilis. FEMS Microbiol Lett. 1989;66:271–276. [PubMed] [Google Scholar]

380. Power E G M, Russell A D. Sporicidal action of alkaline glutaraldehyde: factors influencing activity and a comparison with other aldehydes. J Appl Bacteriol. 1990;69:261–268. [PubMed] [Google Scholar]

381. Poxton I R. Prokaryote envelope diversity. J Appl Bacteriol Symp Suppl. 1993;70:1S–11S. [PubMed] [Google Scholar]

382. Prince D L, Prince H N, Thraenhart O, Muchmore E, Bonder E, Pugh J. Methodological approaches to disinfection of human hepatitis B virus. J Clin Microbiol. 1993;31:3296–3304. [PMC free article] [PubMed] [Google Scholar]

383. Prince H N, Nonemaker W S, Norgard R C, Prince D L. Drug resistance with topical antiseptics. J Pharm Sci. 1978;67:1629–1631. [PubMed] [Google Scholar]

384. Prince H N, Prince D L, Prince R N. Principles of viral control and transmission. In: Block S S, editor. Disinfection, sterilization, and preservation. 4th ed. Philadelphia, Pa: Lea & Febiger; 1991. pp. 411–444. [Google Scholar]

385. Prusiner S B. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216:136–144. [PubMed] [Google Scholar]

387. Rahn R O, Landry L C. Ultraviolet irradiation of nucleic acids complexed with heavy atoms. II. Phosphorescence and photodimerization of DNA complexed with Ag+ Photochem Photobiol. 1973;18:29–38. [PubMed] [Google Scholar]

388. Rahn R O, Setlow J K, Landry L C. Ultraviolet irradiation of nucleic acids complexed with heavy atoms. III. Influence of Ag+ and Hg+on the sensitivity of phage and of transforming DNA to ultraviolet radiation. Photochem Photobiol. 1973;18:39–41. [PubMed] [Google Scholar]

389. Ranganthan N S. Chlorhexidine. In: Ascenzi J M, editor. Handbook of disinfectants and antiseptics. New York, N.Y: Marcel Dekker, Inc.; 1996. pp. 235–264. [Google Scholar]

390. Rastogi N S, Frehel C, Ryter A, Ohayon H, Lesowd M, David H L. Multiple drug resistance in Mycobacterium avium: is the wall architecture responsible for the exclusion of antimicrobial agents? Antimicrob Agents Chemother. 1981;20:666–677. [PMC free article] [PubMed] [Google Scholar]

391. Rastogi N S, Goh K S, David H L. Enhancement of drug susceptibility of Mycobacterium aviumby inhibitors of cell envelope synthesis. Antimicrob Agents Chemother. 1990;34:759–764. [PMC free article] [PubMed] [Google Scholar]

392. Rayman M K, Lo T C Y, Sanwal B D. Transport of succinate in Escherichia coli. J Biol Chem. 1972;247:6332–6339. [PubMed] [Google Scholar]

393. Regos J, Hitz H R. Investigations on the mode of action of triclosan, a broad spectrum antimicrobial agent. Zentbl Bakteriol Mikrobiol Hyg I Abt Orig. 1974;226:390–401. [PubMed] [Google Scholar]

394. Resnick L, Varen K, Salahuddin S Z, Tondreau S, Markham P D. Stability and inactivation of HTLV-III/LAV under clinical and laboratory environments. JAMA. 1986;255:1887–1891. [PubMed] [Google Scholar]

395. Reverdy M E, Bes M, Brun Y, Fleurette J. Évolution de la résistance aux antibiotiques et aux antiseptiques de souche hospitalières de Staphylococcus aureus isolées de 1980 à1991. Pathol Biol. 1993;41:897–904. [PubMed] [Google Scholar]

396. Reverdy M-E, Bes M, Nervi C, Martra A, Fleurette J. Activity of four antiseptics (acriflavine, benzalkonium chloride, chlorhexidine digluconate and hexamidine di-isethionate) and of ethidium bromide on 392 strains representing 26 Staphylococcusspecies. Med Microbiol Lett. 1992;1:56–63. [Google Scholar]

397. Richards R M E. Antimicrobial action of silver nitrate. Microbios. 1981;31:83–91. [PubMed] [Google Scholar]

398. Richards R M E, Odelola H A, Anderson B. Effect of silver on whole cells and spheroplasts of a silver resistant Pseudomonas aeruginosa. Microbios. 1984;39:151–158. [PubMed] [Google Scholar]

399. Richards R M E, Taylor R B, Xing D K L. An evaluation of the antibacterial activities of sulfonamides, trimethoprim, dibromopropamidine, and silver nitrate compared with their uptakes by selected bacteria. J Pharm Sci. 1991;80:861–867. [PubMed] [Google Scholar]

400. Richards R M E, Xing J Z, Gregory D W, Marshall D. Investigation of cell envelope damage to Pseudomonas aeruginosa and Enterobacter cloacaeby dibromopropamidine isethionate. J Pharm Sci. 1993;82:975–977. [PubMed] [Google Scholar]

401. Rogers F G, Hufton P, Kurzawska E, Molloy C, Morgan S. Morphological response of human rotavirus to ultraviolet radiation, heat and disinfectants. J Med Microbiol. 1985;20:123–130. [PubMed] [Google Scholar]

402. Rose A H. Responses to the chemical environment. In: Rose A H, Harrison J S, editors. The yeasts. 2nd ed. 2. Yeasts and the environment. London, England: Academic Press, Ltd.; 1987. pp. 5–40. [Google Scholar]

403. Rosenberg A, Alatary S D, Peterson A F. Safety and efficacy of the antiseptic chlorhexidine gluconate. Surg Gynecol Obstet. 1976;143:789–792. [PubMed] [Google Scholar]

404. Rosenkranz H S, Rosenkranz S. Silver sulfadiazine: interaction with isolated deoxyribonucleic acid. Antimicrob Agents Chemother. 1972;2:373–383. [PMC free article] [PubMed] [Google Scholar]

405. Rouche D A, Cram D S, Di Berardino D, Littlejohn T G, Skurray R A. Efflux-mediated antiseptic gene qacA from Staphylococcus aureus: common ancestry with tetracycline and sugar-transport proteins. Mol Microbiol. 1990;4:2051–2062. [PubMed] [Google Scholar]

406. Roussow F T, Rowbury R J. Effects of the resistance plasmid R124 on the level of the OmpF outer membrane protein and on the response of Escherichia colito environmental agents. J Appl Bacteriol. 1984;56:73–79. [PubMed] [Google Scholar]

407. Rubin J. Human immunodeficiency virus (HIV) disinfection and control. In: Block S S, editor. Disinfection, sterilization and preservation. 4th ed. Philadelphia, Pa: Lea & Febiger; 1991. pp. 472–481. [Google Scholar]

408. Rudolf A S, Levine M. Iowa Engineering and Experimental Station bulletin 150. Iowa: Iowa Engineering and Experimental Station; 1941. [Google Scholar]

409. Russell A D. Use of protoplasts, spheroplasts, L-forms and pleuropneumonia-like organisms in disinfection studies. Lab Pract. 1968;17:804–808. [PubMed] [Google Scholar]

410. Russell A D. Ethylenediamine tetraacetic acid. In: Hugo W B, editor. Inhibition and destruction of the microbial cell. London, England: Academic Press, Ltd.; 1971. pp. 209–224. [Google Scholar]

411. Russell A D. Modification of the bacterial cell envelope and enhancement of antibiotic susceptibility. In: Stuart-Harris C H, Harris D M, editors. The control of antibiotic-resistant bacteria. London, England: Academic Press, Ltd.; 1981. pp. 119–165. [Google Scholar]

412. Russell A D. The destruction of bacterial spores. London, England: Academic Press, Ltd.; 1982. pp. 169–231. [Google Scholar]

413. Russell A D. The role of plasmids in bacterial resistance to antiseptics, disinfectants and preservatives. J Hosp Infect. 1985;6:9–19. [PubMed] [Google Scholar]

414. Russell A D. Bacterial spores and chemical sporicidal agents. Clin Microbiol Rev. 1990;3:99–119. [PMC free article] [PubMed] [Google Scholar]

415. Russell A D. Mechanisms of bacterial resistance to non-antibiotics: food additives and food and pharmaceutical preservatives. J Appl Bacteriol. 1990;71:191–201. [PubMed] [Google Scholar]

416. Russell A D. Chemical sporicidal and sporostatic agents. In: Block S S, editor. Disinfection, sterilization, and preservation. 4th ed. Philadelphia, Pa: Lea & Febiger; 1991. pp. 365–376. [Google Scholar]

417. Russell A D. Mechanisms of bacterial resistance to non-antibiotics: food additives and food and pharmaceutical preservatives. J Appl Bacteriol. 1991;71:191–201. [PubMed] [Google Scholar]

418. Russell A D. Effect of liquid phase antibacterial agents. In: Russell A D, editor. The destruction of bacterial spores. London, England: Academic Press, Ltd.; 1992. pp. 169–231. [Google Scholar]

419. Russell A D. Activity of biocides against mycobacteria. J Appl Bacteriol, Symp Suppl. 1996;81:87S–101S. [PubMed] [Google Scholar]

420. Russell A D. Microbial cell walls and resistance of bacteria to antibiotics and biocides. J Infect Dis. 1993;168:1339–1340. [PubMed] [Google Scholar]

421. Russell A D. Glutaraldehyde: current status and uses. Infect Control Hosp Epidemiol. 1994;15:724–733. [PubMed] [Google Scholar]

422. Russell A D. Mechanisms of bacterial resistance to biocides. Int Biodeterior Biodegrad. 1995;36:247–265. [Google Scholar]

423. Russell A D. Plasmids and bacterial resistance to biocides. J Appl Microbiol. 1997;82:155–165. [PubMed] [Google Scholar]

424. Russell, A. D. Assessment of sporicidal activity. Int Biodeterior. Biodegrad., in press.

425. Russell, A. D. Mechanisms of bacterial resistance to antibiotics and biocides. Progr. Med. Chem., in press. [PubMed]

426. Russell, A. D. Antifungal activity of biocides. In A. D. Russell, W. B. Hugo, and G. A. J. Ayliffe (ed.), Principles and practice of disinfection, preservation and sterilization, 3rd ed., in press. Blackwell Science, Oxford, England.

427. Russell, A. D. Plasmids and bacterial resistance. In A. D. Russell, W. B. Hugo, and G. A. J. Ayliffe (ed.), Principles and practice of disinfection, preservation and sterilization, 3rd ed., in press. Blackwell Science, Oxford, England.

428. Russell A D, Chopra I. Understanding antibacterial action and resistance. 2nd ed. Chichester, England: Ellis Horwood; 1996. [Google Scholar]

429. Russell A D, Dancer B N, Power E G M. Effects of chemical agents on bacterial sporulation, germination and outgrowth. Soc Appl Bacteriol Tech Ser. 1991;27:23–44. [Google Scholar]

430. Russell A D, Day M J. Antibacterial activity of chlorhexidine. J Hosp Infect. 1993;25:229–238. [PubMed] [Google Scholar]

431. Russell A D, Day M J. Antibiotic and biocide resistance in bacteria. Microbios. 1996;85:45–65. [PubMed] [Google Scholar]

432. Russell A D, Furr J R. The antibacterial activity of a new chloroxylenol formulation containing ethylenediamine tetraacetic acid. J Appl Bacteriol. 1977;43:253–260. [PubMed] [Google Scholar]

433. Russell A D, Furr J R. The effects of antiseptics, disinfectants and preservatives on smooth, rough and deep rough strains of Salmonella typhimurium. Int J Pharm. 1986;34:115–123. [Google Scholar]

434. Russell A D, Furr J R. Susceptibility of some porin- and lipopolysaccharide-deficient strains of Escherichia colito some antiseptics and disinfectants. J Hosp Infect. 1986;8:47–56. [PubMed] [Google Scholar]

435. Russell A D, Furr J R. Comparative sensitivity of smooth, rough and deep rough strains of Escherichia colito chlorhexidine, quaternary ammonium compounds and dibromopropamidine isethionate. Int J Pharm. 1987;36:191–197. [Google Scholar]

436. Russell A D, Furr J R. Biocides: mechanisms of antifungal action and fungal resistance. Sci Prog. 1996;79:27–48. [PubMed] [Google Scholar]

437. Russell A D, Furr J R, Maillard J-Y. Microbial susceptibility and resistance to biocides. ASM News. 1997;63:481–487. [Google Scholar]

438. Russell A D, Furr J R, Pugh W J. Susceptibility of porin- and lipopolysaccharide-deficient mutants of Escherichia coli to a homologous series of esters of p-hydroxybenzoic acid. Int J Pharm. 1985;27:163–173. [Google Scholar]

439. Russell A D, Furr J R, Pugh W J. Sequential loss of outer membrane lipopolysaccharide and sensitivity of Escherichia colito antibacterial agents. Int J Pharm. 1987;35:227–233. [Google Scholar]

440. Russell A D, Gould G W. Resistance of Enterobacteriaceae to preservatives and disinfectants. J Appl Bacteriol Symp Suppl. 1988;65:167S–195S. [PubMed] [Google Scholar]

441. Russell A D, Haque H. Inhibition of EDTA-lysozyme lysis of Pseudomonas aeruginosaby glutaraldehyde. Microbios. 1975;13:151–153. [Google Scholar]

442. Russell A D, Hopwood D. The biological uses and importance of glutaraldehyde. Prog Med Chem. 1976;13:271–301. [PubMed] [Google Scholar]

443. Russell A D, Hugo W B. Antimicrobial activity and action of silver. Prog Med Chem. 1994;31:351–371. [PubMed] [Google Scholar]

444. Russell A D, Hugo W B. Chemical disinfectants. In: Linton A H, Hugo W B, Russell A D, editors. Disinfection in veterinary and farm animal practice. Oxford, England: Blackwell Scientific Publications; 1987. pp. 12–42. [Google Scholar]

445. Russell A D, Hugo W B. Perturbation of homeostatic mechanisms in bacteria by pharmaceuticals. In: Whittenbury R, Gould G W, Banks J G, Board R G, editors. Homeostatic mechanisms in microorganisms. Bath, England: Bath University Press; 1988. pp. 206–219. [Google Scholar]

446. Russell A D, Hugo W B, Ayliffe G A J, editors. Principle and practices of disinfection, preservation and sterilization. 2nd ed. Oxford, England: Blackwell Scientific Publications Ltd.; 1992. [Google Scholar]

447. Russell A D, Jones B D, Milburn P. Reversal of the inhibition of bacterial spore germination and outgrowth by antibacterial agents. Int J Pharm. 1985;25:105–112. [Google Scholar]

448. Russell A D, Morris A, Allwood M C. Methods for assessing damage to bacteria induced by chemical and physical agents. Methods Microbiol. 1973;8:95–182. [Google Scholar]

449. Russell A D, Mills A P. Comparative sensitivity and resistance of some strains of Pseudomonas aeruginosa and Pseudomonas stutzerito antibacterial agents. J Clin Pathol. 1974;27:463–466. [PMC free article] [PubMed] [Google Scholar]

450. Russell A D, Munton T J. Bactericidal and bacteriostatic activity of glutaraldehyde and its interaction with lysine and proteins. Microbios. 1974;11:147–152. [Google Scholar]

451. Russell A D, Russell N J. Biocides: activity, action and resistance. Symp Soc Gen Microbiol. 1995;53:327–365. [Google Scholar]

452. Russell, A. D., U. Tattawajaet, J.-Y. Maillard, and A. D. Russell. Possible linked bacterial resistance to antibiotics and biocides. Antimicrob. Agents Chemother, in press. [PMC free article] [PubMed]

453. Russell A D, Vernon G N. Inhibition by glutaraldehyde of lysostaphin-induced lysis of Staphylococcus aureus. Microbios. 1975;13:147–149. [Google Scholar]

454. Rutala W A. APIC guidelines for selection and use of disinfectants. Am J Infect Control. 1995;23:313–342. [PubMed] [Google Scholar]

455. Rutala, W. A., E. C. Cole, M. S. Wannamaker, and D. J. Weber. 1991. Inactivation of Mycobacterium tuberculosis and Mycobacterium bovis by 14 hospital disinfectants. Am. J. Med. 91(Suppl. B):267S–271S. [PubMed]

456. Sabli M Z H, Setlow P, Waites W M. The effect of hypochlorite on spores of Bacillus subtilislacking small acid-soluble proteins. Lett Appl Microbiol. 1996;22:405–507. [Google Scholar]

457. Sagripanti J-L, Bonifacino A. Comparative sporicidal effects of liquid chemical agents. Appl Environ Microbiol. 1996;62:545–551. [PMC free article] [PubMed] [Google Scholar]

458. Salk J E, Gori J B. A review of theoretical, experimental and practical considerations in the use of formaldehyde for inactivation of poliovirus. Ann N Y Acad Sci. 1960;83:609–637. [PubMed] [Google Scholar]

459. Salt W G, Wiseman D. Biocide uptake by bacteria. Soc Appl Bacteriol Tech Ser. 1991;27:65–86. [Google Scholar]

460. Salton M R J. Lytic agents, cell permeability and monolayer penetrability. J Gen Physiol. 1968;52:277S–252S. [PMC free article] [PubMed] [Google Scholar]

461. Sareen M, Khuller G K. Phospholipids of ethambutol-susceptible and resistant strains of Mycobacterium smegmatis. J Biosci. 1988;13:243–248. [Google Scholar]

462. Sareen M, Khuller G K. Cell wall composition of ethambutol-susceptible and resistant strains of Mycobacterium smegmatisA7CC607. Lett Appl Microbiol. 1990;11:7–10. [Google Scholar]

463. Sasatsu M, Shibata Y, Noguchi N, Kono M. High-level resistance to ethidium bromide and antiseptics in Staphylococcus aureus. FEMS Microbiol Lett. 1992;93:109–114. [PubMed] [Google Scholar]

464. Sasatsu M, Shidata Y, Noguchi N, Kono M. Substrates an inhibitors of antiseptic resistance in Staphylococcus aureus. Biol Pharm Bull. 1994;17:163–165. [PubMed] [Google Scholar]

465. Sasatsu M, Shimuzu K, Noguchi N, Kono M. Triclosan-resistant Staphylococcus aureus. Lancet. 1993;341:756. [PubMed] [Google Scholar]

466. Sasatsu M, Shirai Y, Hase M, Noguchi N, Kono M, Behr H, Freney J, Arai T. The origin of the antiseptic-resistance gene ebr in Staphylococcus aureus. Microbios. 1995;84:161–169. [PubMed] [Google Scholar]

467. Sattar S A, Springthorpe V S, Conway B, Xu Y. Inactivation of the human immunodeficiency virus: an update. Rev Med Microbiol. 1994;5:139–150. [Google Scholar]

468. Sautter R L, Mattman L H, Legaspi R C. Serratia marcescensmeningitis associated with a contaminated benzalkonium chloride solution. Infect Control. 1984;5:223–225. [PubMed] [Google Scholar]

469. Savage C A. A new bacteriostat for skin care products. Drug Cosmet Ind. 1971;109:36–39. , 161–163. [Google Scholar]

470. Schreurs W J A, Rosenburgh H. Effect of silver ions on transport and retention of phosphate by Escherichia coli. J Bacteriol. 1982;152:7–13. [PMC free article] [PubMed] [Google Scholar]

471. Setlow B, Setlow P. Binding of small, acid-soluble spore proteins to DNA plays a significant role in the resistance of Bacillus subtilisspores to hydrogen peroxide. Appl Environ Microbiol. 1993;59:3418–3423. [PMC free article] [PubMed] [Google Scholar]

472. Setlow P. Mechanisms which contribute to the long-term survival of spores of Bacillusspecies. J Appl Bacteriol Symp Suppl. 1994;76:49S–60S. [PubMed] [Google Scholar]

473. Shaker L A, Dancer B N, Russell A D, Furr J R. Emergence and development of chlorhexidine resistance during sporulation of Bacillus subtilis168. FEMS Microbiol Lett. 1988;51:73–76. [Google Scholar]

474. Shaker L A, Furr J R, Russell A D. Mechanism of resistance of Bacillus subtilisspores to chlorhexidine. J Appl Bacteriol. 1988;64:531–539. [PubMed] [Google Scholar]

475. Shaker L A, Russell A D, Furr J R. Aspects of the action of chlorhexidine on bacterial spores. Int J Pharm. 1986;34:51–56. [Google Scholar]

476. Shields M S, Reagin M J, Gerger R R, Campbell R, Somerville C. TOM a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepaciaG4. Appl Environ Microbiol. 1995;61:1352–1356. [PMC free article] [PubMed] [Google Scholar]

477. Shih K L, Lederberg J. Effects of chloramine on Bacillus subtilisdeoxyribonucleic acid. J Bacteriol. 1976;125:934–945. [PMC free article] [PubMed] [Google Scholar]

478. Silva J., Jr Clostridium difficilenosocomial infections-still lethal and persistent. Infect Control Hosp Epidemiol. 1994;15:368–370. [PubMed] [Google Scholar]

479. Silver S, Misra S. Plasmid-mediated heavy metal resistances. Annu Rev Microbiol. 1988;42:711–743. [PubMed] [Google Scholar]

480. Silver S, Nucifora G, Chu L, Misra T K. Bacterial ATPases: primary pumps for exporting toxic cations and anions. Trends Biochem Sci. 1989;14:76–80. [PubMed] [Google Scholar]

481. Silvernale J N, Joswick H L, Corner T R, Gerhardt P. Antimicrobial actions of hexachlorophane: cytological manifestations. J Bacteriol. 1971;108:482–491. [PMC free article] [PubMed] [Google Scholar]

482. Scott E M, Gorman S P. Glutaraldehyde. In: Block S S, editor. Disinfection, sterilization and preservation. 4th ed. Philadelphia, Pa: Lea & Febiger; 1991. pp. 596–614. [Google Scholar]

483. Spicher G, Peters J. Microbial resistance to formaldehyde. I. Comparative quantitative studies in some selected species of vegetative bacteria, bacterial spores, fungi, bacteriophages and viruses. Zentbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe B. 1976;163:486–508. [PubMed] [Google Scholar]

484. Spicher G, Peters J. Heat activation of bacterial spores after inactivation by formaldehyde. Dependence on heat activation on temperature and duration of action. Zentbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe B. 1981;173:188–196. [PubMed] [Google Scholar]

485. Springthorpe V S, Grenier J L, Lloyd-Evans N, Sattar S A. Chemical disinfection of human rotaviruses: efficacy of commercially-available products in suspension tests. J Hyg. 1986;97:139–161. [PMC free article] [PubMed] [Google Scholar]

486. Springthorpe V S, Satter S A. Chemical disinfection of virus-contaminated surfaces. Crit Rev Environ Control. 1990;20:169–229. [Google Scholar]

487. Srivastava R B, Thompson R E M. Influence of bacterial cell age on phenol action. Nature (London) 1965;206:216. [PubMed] [Google Scholar]

488. Srivastava R B, Thompson R E M. Studies in the mechanism of action of phenol on Escherichia colicells. Br J Exp Pathol. 1966;67:315–323. [PMC free article] [PubMed] [Google Scholar]

489. Stewart G S A B, Jassim S A A, Denyer S P. Mechanisms of action and rapid biocide testing. Soc Appl Bacteriol Tech Ser. 1991;27:319–329. [Google Scholar]

490. Stewart G S A B, Johnstone K, Hagelberg E, Ellar D J. Commitment of bacterial spores to germinate. A measure of the trigger reaction. Biochem J. 1981;198:101–106. [PMC free article] [PubMed] [Google Scholar]

491. Stewart M H, Olson B H. Physiological studies of chloramine resistance developed by Klebsiella pneumoniaeunder low-nutrient growth conditions. Appl Environ Microbiol. 1992;58:2918–2927. [PMC free article] [PubMed] [Google Scholar]

492. Stickler D J, Thomas B, Clayton J C, Chawla J A. Studies on the genetic basis of chlorhexidine resistance. Br J Clin Pract Symp Suppl. 1983;25:23–28. [Google Scholar]

493. Stickler D J, Dolman J, Rolfe S, Chawla J. Activity of some antiseptics against urinary Escherichia coligrowing as biofilms on silicone surfaces. Eur J Clin Microbiol Infect Dis. 1989;8:974–978. [PubMed] [Google Scholar]

494. Stickler D J, Dolman J, Rolfe S, Chawla J. Activity of antiseptics against urinary tract pathogens growing as biofilms on silicone surfaces. Eur J Clin Microbiol Infect Dis. 1991;10:410–415. [PubMed] [Google Scholar]

495. Stickler D J, Hewett P. Activity of antiseptics against biofilms of mixed bacterial species growing on silicone surfaces. Eur J Clin Microbiol Infect Dis. 1991;10:416–421. [PubMed] [Google Scholar]

496. Stickler, D. J., and B. J. King. Intrinsic resistance. In A. D. Russell, W. B. Hugo, and G. A. J. Ayliffe (ed.), Principles and practice of disinfection, preservation and sterilization, 3rd ed., in press. Blackwell Science, Oxford, England.

497. Storz G, Altuvia S. OxyR regulon. Methods Enzymol. 1994;234:217–223. [PubMed] [Google Scholar]

498. Sutton L, Jacoby G A. Plasmid-determined resistance to hexachlorophene in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1978;13:634–636. [PMC free article] [PubMed] [Google Scholar]

499. Sykes G. The influence of germicides on the dehydrogenases of Bact. coli. 1. The succinic acid dehydrogenase of Bact. coli. J Hyg. 1939;39:463–469. [PMC free article] [PubMed] [Google Scholar]

500. Sykes G. The sporicidal properties of chemical disinfectants. J Appl Bacteriol. 1970;33:147–156. [PubMed] [Google Scholar]

501. Takayama K, Kilburn J O. Inhibition of synthesis of arabinogalactran by ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother. 1989;33:1493–1499. [PMC free article] [PubMed] [Google Scholar]

502. Tattawasart U, Maillard J-Y, Furr J R, Hann A C, Russell A D. Poster presented at Society for Applied Microbiology, Autumn Meeting. 1997. Basis of the resistance of Pseudomonas stutzerito antibiotics and biocides. [Google Scholar]

503. Taylor, D. M. Inactivation of unconventional agents of the transmissible degenerative encephalopathies. In A. D. Russell, W. B. Hugo, and G. A. J. Ayliffe (ed.), Principles and practice of disinfection, preservation and sterilization, 3rd ed., in press. Blackwell Science, Oxford, England.

504. Taylor G R, Butler M. A comparison of the virucidal properties of chlorine, chlorine dioxide, bromine chloride and iodine. J Hyg. 1982;89:321–328. [PMC free article] [PubMed] [Google Scholar]

505. Tennent J M, Lyon B R, Gillespie M T, May J W, Skurray R A. Cloning and expression of Staphylococcus aureus plasmid-mediated quaternary ammonium resistance in Escherichia coli. Antimicrob Agents Chemother. 1985;27:79–83. [PMC free article] [PubMed] [Google Scholar]

506. Tennent J M, Lyon B R, Midgley M, Jones J G, Purewal A S, Skurray R A. Physical and chemical characterization of the qacA gene encoding antiseptic and disinfectant resistance in Staphylococcus aureus. J Gen Microbiol. 1989;135:1–10. [PubMed] [Google Scholar]

507. Thomas S, Russell A D. Studies on the mechanism of the sporicidal action of glutaraldehyde. J Appl Bacteriol. 1974;37:83–92. [PubMed] [Google Scholar]

508. Thomas S, Russell A D. Temperature-induced changes in the sporicidal activity and chemical properties of glutaraldehyde. Appl Microbiol. 1974;28:331–335. [PMC free article] [PubMed] [Google Scholar]

509. Thurmann R B, Gerba C P. Molecules mechanisms of viral inactivation by water disinfectants. Adv Appl Microbiol. 1988;33:75–105. [PubMed] [Google Scholar]

510. Thurmann R B, Gerba C P. The molecules mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit Rev Environ Control. 1989;18:295–315. [Google Scholar]

511. Trevor J T. Silver resistance and accumulation in bacteria. Enzyme Microb Technol. 1987;9:331–333. [Google Scholar]

512. Trujillo P, David T J. Sporistatic and sporicidal properties of aqueous formaldehyde. Appl Microbiol. 1972;23:618–622. [PMC free article] [PubMed] [Google Scholar]

513. Trujillo R, Laible N. Reversible inhibition of spore germination by alcohols. Appl Microbiol. 1970;20:620–623. [PMC free article] [PubMed] [Google Scholar]

514. Tyler R, Ayliffe G A J, Bradley C. Viricidal activity of disinfectants: studies with the poliovirus. J Hosp Infect. 1990;15:339–345. [PubMed] [Google Scholar]

515. Uhl S. Triclosan-resistant Staphylococcus aureus. Lancet. 1993;342:248. [PubMed] [Google Scholar]

516. Vaara M. Agents that increase the permeability of the outer membrane. Microbiol Rev. 1992;56:395–411. [PMC free article] [PubMed] [Google Scholar]

517. Vaara M, Jakkola J. Sodium hexametaphosphate sensitizes Pseudomonas aeruginosa, several other species of Pseudomonas, and Escherichia colito hydrophobic drugs. Antimicrob Agents Chemother. 1989;33:1741–1747. [PMC free article] [PubMed] [Google Scholar]

518. Van Cuyck-Gandre H, Molin G, Cenatiempo Y. Étude de la résistance plasmidique aux antiseptiques. Mise au point de méthodes. Pathol Biol. 1985;33:623–627. [PubMed] [Google Scholar]

519. Van Klingeren B, Pullen W. Glutaraldehyde-resistant mycobacteria from endoscope washers. J Hosp Infect. 1993;25:147–149. [PubMed] [Google Scholar]

520. Viljanen P. Polycations which disorganize the outer membrane inhibit conjugation in Escherichia coli. J Antibiot. 1987;40:882–886. [PubMed] [Google Scholar]

521. Vischer W A, Regos J. Antimicrobial spectrum of Triclosan, a broad-spectrum antimicrobial agent for topical application. Zentbl Bakteriol Mikrobiol Hyg Abt Orig A. 1973;226:376–389. [PubMed] [Google Scholar]

522. Waaler S M, Rolla G, Skjorland K K, Ogaard B. Effects of oral rinsing with triclosan and sodium lauryl sulfate on dental plaque formation: pilot study. Scand J Dent Res. 1993;101:192–195. [PubMed] [Google Scholar]

523. Waites W M, Bayliss C E. The effect of changes in spore coat on the destruction of Bacillus cereusspores by heat and chemical treatment. J Appl Biochem. 1979;1:71–76. [Google Scholar]

524. Walker J F. Formaldehyde. ACS Monogr. Ser. 3. New York, N.Y: Reinhold Publishing; 1964. [Google Scholar]

525. Wallhäusser K. Antimicrobial preservatives used by the cosmetics industry. In: Kabara J J, editor. Cosmetic and drug preservation. Principles and practice. New York, N.Y: Marcel Dekker, Inc.; 1984. pp. 605–745. [Google Scholar]

526. Walsh S, Maillard J-Y, Russell A D. Poster presented at Society for Applied Microbiology Autumn Meeting. 1997. Effects of testing method on activity of high level antibacterial disinfectants. [Google Scholar]

527. Walters T H, Furr J R, Russell A D. Antifungal action of chlorhexidine. Microbios. 1983;38:195–204. [Google Scholar]

528. Wang P, Schellhorn H E. Induction of resistance to hydrogen peroxide and radiation in Deionococcus radiodurnans. Can J Microbiol. 1995;41:170–176. [PubMed] [Google Scholar]

529. Warth A D. Effect of benzoic acid on growth yield of years differing in their resistance to preservatives. Appl Environ Microbiol. 1988;54:2091–2095. [PMC free article] [PubMed] [Google Scholar]

530. Wheeler P R, Besra G S, Minnikin D E, Ratledge C. Inhibition of mycolic acid biosynthesis in a cell-wall preparation from Mycobacterium smegmatisby methyl 4-(2-octadedylcyclopropen-1-yl)butanoate, a structural analogue of a key precursor. Lett Appl Microbiol. 1993;17:33–36. [Google Scholar]

531. White D C. Antifungal drug resistance in Candida albicans. ASM News. 1997;63:427–433. [Google Scholar]

532. Williams N D, Russell A D. The nature and site of biocide-induced sublethal injury in Bacillus subtilisspores. FEMS Microbiol Lett. 1992;99:277–280. [PubMed] [Google Scholar]

533. Williams N D, Russell A D. Increased susceptibility of injured spores of Bacillus subtilisto cationic and other stressing agents. Lett Appl Microbiol. 1992;15:253–255. [Google Scholar]

534. Williams N D, Russell A D. Injury and repair in biocide-treated spores of Bacillus subtilis. FEMS Microbiol Lett. 1993;106:183–186. [PubMed] [Google Scholar]

535. Williams N D, Russell A D. Revival of biocide-treated spores of Bacillus subtilis. J Appl Bacteriol. 1993;75:69–75. [PubMed] [Google Scholar]

536. Williams N D, Russell A D. Revival of Bacillus subtilisspores from biocide-induced injury in germination processes. J Appl Bacteriol. 1993;75:76–81. [PubMed] [Google Scholar]

537. Williams N D, Russell A D. Conditions suitable for the recovery of biocide-treated spores of Bacillus subtilis. Microbios. 1993;74:121–129. [PubMed] [Google Scholar]

538. Wimpenny J, Nichols W, Stickler D, Lappin-Scott H. Bacterial biofilms and their control in medicine and industry. Cardiff, Wales: BioLine; 1994. [Google Scholar]

539. Winquist L, Rannug U, Rannug A, Ramel C. Protection from toxic and mutagenic effects of hydrogen peroxide by catalase induction in Salmonella typhimurium. Mutat Res. 1984;141:145–147. [PubMed] [Google Scholar]

540. Wood P, Jones M, Bhakoo M, Gilbert P. A novel strategy for control of microbial biofilms through generation of biocide at the biofilm-surface interface. Appl Environ Microbiol. 1996;62:2598–2602. [PMC free article] [PubMed] [Google Scholar]

541. Wright A M, Hoxey E V, Soper C J, Davies D J G. Biological indicators for low temperature steam and formaldehyde sterilization: effect of variations in recovery conditions on the response of spores of Bacillus stearothermophilusNCIMB 8224 to low temperature steam and formaldehyde. J Appl Microbiol. 1997;82:552–556. [Google Scholar]

542. Wu Z C, Jiang X J. The effects of chlorine disinfection on the resistance of bacteriophage f2 in water. Chung Hua Yu Fang I Hsueh Tsa Chih. 1990;24:196–198. [PubMed] [Google Scholar]

543. Yakabe Y, Sano T, Ushio H, Yasunaga T. Kinetic studies of the interaction between silver ion and deoxyribonucleic acid. Chem Lett. 1980;4:373–376. [Google Scholar]

544. Yamamoto T, Tamura Y, Yokota T. Antiseptic and antibiotic resistance plasmid in Staphylococcus aureusthat possesses ability to confer chlorhexidine and acrinol resistance. Antimicrob Agents Chemother. 1988;32:932–935. [PMC free article] [PubMed] [Google Scholar]

545. Yasuda-Yasuki Y, Namiki-Kanie S, Hachisaka Y. Inhibition of germination of Bacillus subtilis spores by alcohols. In: Chambliss G, Vary J C, editors. Spores VII. Washington, D.C: American Society for Microbiology; 1978. pp. 113–116. [Google Scholar]

546. Young D C, Sharp D C. Virion conformational forms and the complex inactivation kinetics of echovirus by chlorine in water. Appl Environ Microbiol. 1985;49:359–364. [PMC free article] [PubMed] [Google Scholar]

547. Zavriev S K, Minchenkova L E, Vorličková M, Kolchinsky A M, Volkenstein M V, Ivanov V I. Circular dichroism anisotrope of DNA with different modifications at N7 of guanine. Biochim Biophys Acta. 1979;564:212–224. [PubMed] [Google Scholar]

What are the disinfecting agents?

These include alcohols, chlorine and chlorine compounds, formaldehyde, glutaraldehyde, ortho-phthalaldehyde, hydrogen peroxide, iodophors, peracetic acid, phenolics, and quaternary ammonium compounds.

What are 3 types of disinfecting?

Oxidizing disinfectants include the halogens, chlorine, iodine, bromine, and chlorine dioxide, and oxygen-releasing materials such as peracetic acid and hydrogen peroxide. Nonoxidizing disinfectants are as follows: quaternary ammonium compounds, amphoterics, biguanides, and acid anionics.

What are the 2 types of disinfectants?

Types of disinfectants include: Air disinfectants, Alcohols, Aldehydes, Oxidizing agents, Phenolics, Quaternary ammonium compounds, Silver, and Copper alloy surfaces.

Is disinfectant naturally occurring?

The best natural disinfectants include alcohol, hydrogen peroxide, vinegar, hot water, and some essential oils. Evidence suggests that in some cases, many of these natural disinfectants can be as effective at killing germs as chemical cleaners like bleach.