During bacterial translation, initiation occurs in three steps. which step is last?

Recommended textbook solutions

During bacterial translation, initiation occurs in three steps. which step is last?

U.S. History

1st EditionJohn Lund, Paul S. Vickery, P. Scott Corbett, Todd Pfannestiel, Volker Janssen

567 solutions

During bacterial translation, initiation occurs in three steps. which step is last?

The Language of Composition: Reading, Writing, Rhetoric

2nd EditionLawrence Scanlon, Renee H. Shea, Robin Dissin Aufses

661 solutions

During bacterial translation, initiation occurs in three steps. which step is last?

America's History for the AP Course

9th EditionEric Hinderaker, James A. Henretta, Rebecca Edwards, Robert O. Self

961 solutions

During bacterial translation, initiation occurs in three steps. which step is last?

Tonal Harmony

8th EditionByron Almen, Dorothy Payne, Stefan Kostka

136 solutions

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

1. Adhin, M. R., and J. van Duin. 1990. Scanning model for translational reinitiation in eubacteria. J. Mol. Biol. 213:811-818. [PubMed] [Google Scholar]

2. Antoun, A., M. Y. Pavlov, K. Andersson, T. Tenson, and M. Ehrenberg. 2003. The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis. EMBO J. 22:5593-5601. [PMC free article] [PubMed] [Google Scholar]

2a. Baan, R. A., J. J. Duijfjes, E. van Leerdam, P. H. van Knippenberg, and L. Bosch. 1976. Specific in situ cleavage of 16S ribosomal RNA of Escherichia coli interferes with the function of initiation factor IF-1. Proc. Natl. Acad. Sci. USA 73:702-706. [PMC free article] [PubMed] [Google Scholar]

3. Bae, W., B. Xia, M. Inouye, and K. Severinov. 2000. Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc. Natl. Acad. Sci. USA 97:7784-7789. [PMC free article] [PubMed] [Google Scholar]

4. Ban, N., P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905-920. [PubMed] [Google Scholar]

5. Bashan, A., R. Zarivach, F. Schluenzen, I. Agmon, J. Harms, T. Auerbach, D. Baram, R. Berisio, H. Bartels, H. A. Hansen, P. Fucini, D. Wilson, M. Peretz, M. Kessler, and A. Yonath. 2003. Ribosomal crystallography: peptide bond formation and its inhibition. Biopolymers 70:19-41. [PubMed] [Google Scholar]

6. Battiste, J. L., T. V. Pestova, C. U. Hellen, and G. Wagner. 2000. The eIF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol. Cell 5:109-119. [PubMed] [Google Scholar]

7. Bell, S. D., and S. P. Jackson. 1998. Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. Trends Microbiol. 6:222-228. [PubMed] [Google Scholar]

8. Benard, L., C. Philippe, B. Ehresmann, C. Ehresmann, and C. Portier. 1996. Pseudoknot and translational control in the expression of the S15 ribosomal protein. Biochimie 78:568-576. [PMC free article] [PubMed] [Google Scholar]

9. Benelli, D., E. Maone, and P. Londei. 2003. Two different mechanisms for ribosome/mRNA interaction in archaeal translation initiation. Mol. Microbiol. 50:635-643. [PubMed] [Google Scholar]

10. Binns, N., and M. Masters. 2002. Expression of the Escherichia coli pcnB gene is translationally limited using an inefficient start codon: a second chromosomal example of translation initiated at AUU. Mol. Microbiol. 44:1287-1298. [PubMed] [Google Scholar]

11. Biou, V., F. Shu, and V. Ramakrishnan. 1995. X-ray crystallography shows that translational initiation factor IF3 consists of two compact alpha/beta domains linked by an alpha-helix. EMBO J. 14:4056-4064. [PMC free article] [PubMed] [Google Scholar]

12. Boelens, R., and C. O. Gualerzi. 2002. Structure and function of bacterial initiation factors. Curr. Protein Pept. Sci. 3:107-119. [PubMed] [Google Scholar]

13. Boileau, G., P. Butler, J. W. Hershey, and R. R. Traut. 1983. Direct cross-links between initiation factors 1, 2, and 3 and ribosomal proteins promoted by 2-iminothiolane. Biochemistry 22:3162-3170. [PubMed] [Google Scholar]

14. Bollen, A., R. L. Heimark, A. Cozzone, R. R. Traut, and J. W. Hershey. 1975. Cross-linking of initiation factor IF-2 to Escherichia coli 30 S ribosomal proteins with dimethylsuberimidate. J. Biol. Chem. 250:4310-4314. [PubMed] [Google Scholar]

15. Boni, I. V., D. M. Isaeva, M. L. Musychenko, and N. V. Tzareva. 1991. Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. Nucleic Acids Res. 19:155-162. [PMC free article] [PubMed] [Google Scholar]

16. Bremaud, L., S. Laalami, B. Derijard, and Y. Cenatiempo. 1997. Translation initiation factor IF2 of the myxobacterium Stigmatella aurantiaca: presence of a single species with an unusual N-terminal sequence. J. Bacteriol. 179:2348-2355. [PMC free article] [PubMed] [Google Scholar]

17. Brock, S., K. Szkaradkiewicz, and M. Sprinzl. 1998. Initiation factors of protein biosynthesis in bacteria and their structural relationship to elongation and termination factors. Mol. Microbiol. 29:409-417. [PubMed] [Google Scholar]

18. Brodersen, D. E., W. M. Clemons, Jr., A. P. Carter, B. T. Wimberly, and V. Ramakrishnan. 2002. Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. J. Mol. Biol. 316:725-768. [PubMed] [Google Scholar]

19. Butler, J. S., M. Springer, J. Dondon, M. Graffe, and M. Grunberg-Manago. 1986. Escherichia coli protein synthesis initiation factor IF3 controls its own gene expression at the translational level in vivo. J. Mol. Biol. 192:767-780. [PubMed] [Google Scholar]

20. Bycroft, M., T. J. Hubbard, M. Proctor, S. M. Freund, and A. G. Murzin. 1997. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell 88:235-242. [PubMed] [Google Scholar]

21. Reference deleted.

22. Caldas, T., S. Laalami, and G. Richarme. 2000. Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J. Biol. Chem. 275:855-860. [PubMed] [Google Scholar]

23. Cameron, D. M., J. Thompson, P. E. March, and A. E. Dahlberg. 2002. Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome. J. Mol. Biol. 319:27-35. [PubMed] [Google Scholar]

24. Canonaco, M. A., R. A. Calogero, and C. O. Gualerzi. 1986. Mechanism of translational initiation in prokaryotes. Evidence for a direct effect of IF2 on the activity of the 30 S ribosomal subunit. FEBS Lett. 207:198-204. [PubMed] [Google Scholar]

25. Carson, M. 1997. Ribbons. Methods Enzymol. 277:493-505. [PubMed] [Google Scholar]

26. Carter, A. P., W. M. Clemons, Jr., D. E. Brodersen, R. J. Morgan-Warren, T. Hartsch, B. T. Wimberly, and V. Ramakrishnan. 2001. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291:498-501. [PubMed] [Google Scholar]

27. Celano, B., R. T. Pawlik, and C. O. Gualerzi. 1988. Interaction of Escherichia coli translation-initiation factor IF-1 with ribosomes. Eur. J. Biochem. 178:351-355. [PubMed] [Google Scholar]

28. Chiaruttini, C., M. Milet, and M. Springer. 1996. A long-range RNA-RNA interaction forms a pseudoknot required for translational control of the IF3-L35-L20 ribosomal protein operon in Escherichia coli. EMBO J. 15:4402-4413. [PMC free article] [PubMed] [Google Scholar]

29. Chiaruttini, C., M. Milet, and M. Springer. 1997. Translational coupling by modulation of feedback repression in the IF3 operon of Escherichia coli. Proc. Natl. Acad. Sci. USA 94:9208-9213. [PMC free article] [PubMed] [Google Scholar]

30. Choi, S. K., J. H. Lee, W. L. Zoll, W. C. Merrick, and T. E. Dever. 1998. Promotion of met-tRNAiMet binding to ribosomes by yIF2, a bacterial IF2 homolog in yeast. Science 280:1757-1760. [PubMed] [Google Scholar]

31. Choi, S. K., D. S. Olsen, A. Roll-Mecak, A. Martung, K. L. Remo, S. K. Burley, A. G. Hinnebusch, and T. E. Dever. 2000. Physical and functional interaction between the eukaryotic orthologs of prokaryotic translation initiation factors IF1 and IF2. Mol. Cell. Biol. 20:7183-7191. [PMC free article] [PubMed] [Google Scholar]

32. Condon, C. 2003. RNA processing and degradation in Bacillus subtilis. Microbiol. Mol. Biol. Rev. 67:157-174. [PMC free article] [PubMed] [Google Scholar]

33. Cooperman, B. S., J. Dondon, J. Finelli, M. Grunberg-Manago, and A. M. Michelson. 1977. Photosensitized cross-linking of IF-3 to Escherichia coli 30 S subunits. FEBS Lett. 76:59-63. [PubMed] [Google Scholar]

34. Cooperman, B. S., A. Expert-Bezancon, L. Kahan, J. Dondon, and M. Grunberg-Manago. 1981. IF-3 crosslinking to Escherichia coli ribosomal 30 S subunits by three different light-dependent procedures: identification of 30 S proteins crosslinked to IF-3-utilization of a new two-stage crosslinking reagent, p-nitrobenzylmaleimide. Arch. Biochem. Biophys. 208:554-562. [PubMed] [Google Scholar]

35. Cousineau, B., F. Leclerc, and R. Cedergren. 1997. On the origin of protein synthesis factors: a gene duplication/fusion model. J. Mol. Evol. 45:661-670. [PubMed] [Google Scholar]

36. Crawford, D. J., K. Ito, Y. Nakamura, and W. P. Tate. 1999. Indirect regulation of translational termination efficiency at highly expressed genes and recoding sites by the factor recycling function of Escherichia coli release factor RF3. EMBO J. 18:727-732. [PMC free article] [PubMed] [Google Scholar]

37. Croitoru, V., M. Bucheli-Witschel, P. Hagg, F. Abdulkarim, and L. A. Isaksson. 2004. Generation and characterization of functional mutants in the translation initiation factor IF1 of Escherichia coli. Eur. J. Biochem. 271:534-544. [PubMed] [Google Scholar]

38. Culver, G. M. 2001. Meanderings of the mRNA through the ribosome. Structure (Cambridge) 9:751-758. [PubMed] [Google Scholar]

39. Cummings, H. S., and J. W. Hershey. 1994. Translation initiation factor IF1 is essential for cell viability in Escherichia coli. J. Bacteriol. 176:198-205. [PMC free article] [PubMed] [Google Scholar]

40. Cummings, H. S., J. F. Sands, P. C. Foreman, J. Fraser, and J. W. Hershey. 1991. Structure and expression of the infA operon encoding translational initiation factor IF1. Transcriptional control by growth rate. J. Biol. Chem. 266:16491-16498. [PubMed] [Google Scholar]

41. Dahlquist, K. D., and J. D. Puglisi. 2000. Interaction of translation initiation factor IF1 with the E. coli ribosomal A site. J. Mol. Biol. 299:1-15. [PubMed] [Google Scholar]

42. Dallas, A., and H. F. Noller. 2001. Interaction of translation initiation factor 3 with the 30S ribosomal subunit. Mol. Cell 8:855-864. [PubMed] [Google Scholar]

43. de Cock, E., M. Springer, and F. Dardel. 1999. The interdomain linker of Escherichia coli initiation factor IF3: a possible trigger of translation initiation specificity. Mol. Microbiol. 32:193-202. [PubMed] [Google Scholar]

44. Dennis, P. P. 1997. Ancient ciphers: translation in Archaea. Cell 89:1007-1010. [PubMed] [Google Scholar]

45. de Smit, M. H., and J. van Duin. 1990. Control of prokaryotic translational initiation by mRNA secondary structure. Prog. Nucleic Acid Res. Mol. Biol. 38:1-35. [PubMed] [Google Scholar]

46. Dottavio-Martin, D., D. P. Suttle, and J. M. Ravel. 1979. The effects of initiation factors IF-1 and IF-3 on the dissociation of Escherichia coli 70 S ribosomes. FEBS Lett. 97:105-110. [PubMed] [Google Scholar]

47. Ehresmann, C., F. Baudin, M. Mougel, P. Romby, J. P. Ebel, and B. Ehresmann. 1987. Probing the structure of RNAs in solution. Nucleic Acids Res. 15:9109-9128. [PMC free article] [PubMed] [Google Scholar]

48. Fortier, P. L., J. M. Schmitter, C. Garcia, and F. Dardel. 1994. The N-terminal half of initiation factor IF3 is folded as a stable independent domain. Biochimie 76:376-383. [PubMed] [Google Scholar]

49. Frank, J. 2003. Electron microscopy of functional ribosome complexes. Biopolymers 68:223-233. [PubMed] [Google Scholar]

50. Frank, J., J. Zhu, P. Penczek, Y. Li, S. Srivastava, A. Verschoor, M. Radermacher, R. Grassucci, R. K. Lata, and R. K. Agrawal. 1995. A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376:441-444. [PubMed] [Google Scholar]

51. Garcia, C., P. L. Fortier, S. Blanquet, J. Y. Lallemand, and F. Dardel. 1995. Solution structure of the ribosome-binding domain of E. coli translation initiation factor IF3. Homology with the U1A protein of the eukaryotic spliceosome. J. Mol. Biol. 254:247-259. [PubMed] [Google Scholar]

52. Garret, R. A., S. R. Douthwaite, A. Liljas, A. T. Matheson, P. B. Moore, and H. F. Noller. 2000. The ribosome: structure, function, antibiotics, and cellular interactions. ASM Press, Washington, D.C.

53. Giuliodori, A. M., A. Brandi, C. O. Gualerzi, and C. L. Pon. 2004. Preferential translation of cold-shock mRNAs during cold adaptation. RNA 10:265-276. [PMC free article] [PubMed] [Google Scholar]

54. Govantes, F., E. Andujar, and E. Santero. 1998. Mechanism of translational coupling in the nifLA operon of Klebsiella pneumoniae. EMBO J. 17:2368-2377. [PMC free article] [PubMed] [Google Scholar]

55. Green, R., and J. R. Lorsch. 2002. The path to perdition is paved with protons. Cell 110:665-668. [PubMed] [Google Scholar]

56. Green, R., and H. F. Noller. 1997. Ribosomes and translation. Annu. Rev. Biochem. 66:679-716. [PubMed] [Google Scholar]

57. Grill, S., C. O. Gualerzi, P. Londei, and U. Blasi. 2000. Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation. EMBO J. 19:4101-4110. [PMC free article] [PubMed] [Google Scholar]

58. Grill, S., I. Moll, D. Hasenohrl, C. O. Gualerzi, and U. Blasi. 2001. Modulation of ribosomal recruitment to 5′-terminal start codons by translation initiation factors IF2 and IF3. FEBS Lett. 495:167-171. [PubMed] [Google Scholar]

59. Grunberg-Manago, M., P. Dessen, D. Pantaloni, T. Godefroy-Colburn, A. D. Wolfe, and J. Dondon. 1975. Light-scattering studies showing the effect of initiation factors on the reversible dissociation of Escherichia coli ribosomes. J. Mol. Biol. 94:461-478. [PubMed] [Google Scholar]

60. Gualerzi, C., G. Risuleo, and C. L. Pon. 1977. Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF-3. Biochemistry 16:1684-1689. [PubMed] [Google Scholar]

61. Gualerzi, C. O., L. Brandi, E. Caserta, A. L. Teana, R. Spurio, J. Tomsic, and C. L. Pon. 2000. Translation initiation in bacteria, p. 477-494. In R. A. Garret, S. R. Douthwaite, A. Liljas, A. T. Matheson, P. B. Moore, and H. F. Noller (ed.), The ribosome: structure, function, antibiotics, and cellular interactions. ASM Press, Washington, D.C.

62. Gualerzi, C. O., A. M. Giuliodori, and C. L. Pon. 2003. Transcriptional and post-transcriptional control of cold-shock genes. J. Mol. Biol. 331:527-539. [PubMed] [Google Scholar]

63. Gualerzi, C. O., and C. L. Pon. 1990. Initiation of mRNA translation in prokaryotes. Biochemistry 29:5881-5889. [PubMed] [Google Scholar]

64. Gualerzi, C. O., M. Severini, R. Spurio, A. La Teana, and C. L. Pon. 1991. Molecular dissection of translation initiation factor IF2. Evidence for two structural and functional domains. J. Biol. Chem. 266:16356-16362. [PubMed] [Google Scholar]

65. Gualerzi, C. O., R. Spurio, A. La Teana, R. Calogero, B. Celano, and C. L. Pon. 1989. Site-directed mutagenesis of Escherichia coli translation initiation factor IF1. Identification of the amino acid involved in its ribosomal binding and recycling. Protein Eng. 3:133-138. [PubMed] [Google Scholar]

66. Guenneugues, M., E. Caserta, L. Brandi, R. Spurio, S. Meunier, C. L. Pon, R. Boelens, and C. O. Gualerzi. 2000. Mapping the fMet-tRNA(f)(Met) binding site of initiation factor IF2. EMBO J. 19:5233-5240. [PMC free article] [PubMed] [Google Scholar]

67. Guillier, M., F. Allemand, S. Raibaud, F. Dardel, M. Springer, and C. Chiaruttini. 2002. Translational feedback regulation of the gene for L35 in Escherichia coli requires binding of ribosomal protein L20 to two sites in its leader mRNA: a possible case of ribosomal RNA-messenger RNA molecular mimicry. RNA 8:878-889. [PMC free article] [PubMed] [Google Scholar]

68. Guillon, J. M., S. Heiss, J. Soutourina, Y. Mechulam, S. Laalami, M. Grunberg-Manago, and S. Blanquet. 1996. Interplay of methionine tRNAs with translation elongation factor Tu and translation initiation factor 2 in Escherichia coli. J. Biol. Chem. 271:22321-22325. [PubMed] [Google Scholar]

69. Guillon, J. M., Y. Mechulam, J. M. Schmitter, S. Blanquet, and G. Fayat. 1992. Disruption of the gene for Met-tRNA(fMet) formyltransferase severely impairs growth of Escherichia coli. J. Bacteriol. 174:4294-4301. [PMC free article] [PubMed] [Google Scholar]

70. Haggerty, T. J., and S. T. Lovett. 1997. IF3-mediated suppression of a GUA initiation codon mutation in the recJ gene of Escherichia coli. J. Bacteriol. 179:6705-6713. [PMC free article] [PubMed] [Google Scholar]

71. Hansen, P. K., F. Wikman, B. F. Clark, J. W. Hershey, and H. Uffe Petersen. 1986. Interaction between initiator Met-tRNAfMet and elongation factor EF-Tu from E. coli. Biochimie 68:697-703. [PubMed] [Google Scholar]

72. Harms, J., F. Schluenzen, R. Zarivach, A. Bashan, S. Gat, I. Agmon, H. Bartels, F. Franceschi, and A. Yonath. 2001. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107:679-688. [PubMed] [Google Scholar]

73. Hartz, D., J. Binkley, T. Hollingsworth, and L. Gold. 1990. Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3. Genes Dev. 4:1790-1800. [PubMed] [Google Scholar]

74. Hartz, D., D. S. McPheeters, and L. Gold. 1989. Selection of the initiator tRNA by Escherichia coli initiation factors. Genes Dev. 3:1899-1912. [PubMed] [Google Scholar]

75. Hedegaard, J., M. Hauge, J. Fage-Larsen, K. K. Mortensen, M. Kilian, H. U. Sperling-Petersen, and K. Poulsen. 2000. Investigation of the translation-initiation factor IF2 gene, infB, as a tool to study the population structure of Streptococcus agalactiae. Microbiology 146:1661-1670. [PubMed] [Google Scholar]

76. Hedegaard, J., H. Okkels, B. Bruun, M. Kilian, K. K. Mortensen, and N. Norskov-Lauritsen. 2001. Phylogeny of the genus Haemophilus as determined by comparison of partial infB sequences. Microbiology 147:2599-2609. [PubMed] [Google Scholar]

77. Hedegaard, J., S. A. Steffensen, N. Norskov-Lauritsen, K. K. Mortensen, and H. U. Sperling-Petersen. 1999. Identification of Enterobacteriaceae by partial sequencing of the gene encoding translation initiation factor 2. Int. J. Syst. Bacteriol. 49:1531-1538. [PubMed] [Google Scholar]

78. Hirokawa, G., M. C. Kiel, A. Muto, M. Selmer, V. S. Raj, A. Liljas, K. Igarashi, H. Kaji, and A. Kaji. 2002. Post-termination complex disassembly by ribosome recycling factor, a functional tRNA mimic. EMBO J. 21:2272-2281. [PMC free article] [PubMed] [Google Scholar]

79. Howe, J. G., and J. W. Hershey. 1983. Initiation factor and ribosome levels are coordinately controlled in Escherichia coli growing at different rates. J. Biol. Chem. 258:1954-1959. [PubMed] [Google Scholar]

80. Hua, Y., and D. P. Raleigh. 1998. On the global architecture of initiation factor IF3: a comparative study of the linker regions from the Escherichia coli protein and the Bacillus stearothermophilus protein. J. Mol. Biol. 278:871-878. [PubMed] [Google Scholar]

81. Hubert, M., N. R. Nyengaard, K. Shazand, K. K. Mortensen, S. F. Lassen, M. Grunberg-Manago, and H. U. Sperling-Petersen. 1992. Tandem translation of Bacillus subtilis initiation factor IF2 in E. coli. Over-expression of infBB.su in E. coli and purification of alpha- and beta-forms of IF2B.su. FEBS Lett. 312:132-138. [PubMed] [Google Scholar]

82. Huxley, H. E., and G. Zubay. 1960. Electron microscope observations on the structure of microsomal particles from Escherichia coli. J. Mol. Biol. 2:10-18. [Google Scholar]

83. Ikemura, T., and H. Ozeki. 1977. Gross map location of Escherichia coli transfer RNA genes. J. Mol. Biol. 117:419-446. [PubMed] [Google Scholar]

84. Ishii, S., K. Kuroki, and F. Imamoto. 1984. tRNAMetf2 gene in the leader region of the nusA operon in Escherichia coli. Proc. Natl. Acad. Sci. USA 81:409-413. [PMC free article] [PubMed] [Google Scholar]

85. Janosi, L., S. Mottagui-Tabar, L. A. Isaksson, Y. Sekine, E. Ohtsubo, S. Zhang, S. Goon, S. Nelken, M. Shuda, and A. Kaji. 1998. Evidence for in vivo ribosome recycling, the fourth step in protein biosynthesis. EMBO J. 17:1141-1151. [PMC free article] [PubMed] [Google Scholar]

86. Jin, H., A. Bjornsson, and L. A. Isaksson. 2002. Cis control of gene expression in E. coli by ribosome queuing at an inefficient translational stop signal. EMBO J. 21:4357-4367. [PMC free article] [PubMed] [Google Scholar]

87. Karimi, R., M. Y. Pavlov, R. H. Buckingham, and M. Ehrenberg. 1999. Novel roles for classical factors at the interface between translation termination and initiation. Mol. Cell 3:601-609. [PubMed] [Google Scholar]

88. Katoh, E., T. Hatta, H. Shindo, Y. Ishii, H. Yamada, T. Mizuno, and T. Yamazaki. 2000. High precision NMR structure of YhhP, a novel Escherichia coli protein implicated in cell division. J. Mol. Biol. 304:219-229. [PubMed] [Google Scholar]

89. Kennell, D., and H. Riezman. 1977. Transcription and translation initiation frequencies of the Escherichia coli lac operon. J. Mol. Biol. 114:1-21. [PubMed] [Google Scholar]

90. Kenri, T., F. Imamoto, and Y. Kano. 1994. Three tandemly repeated structural genes encoding tRNA(f1Met) in the metZ operon of Escherichia coli K-12. Gene 138:261-262. [PubMed] [Google Scholar]

91. Kim, K. K., L. W. Hung, H. Yokota, R. Kim, and S. H. Kim. 1998. Crystal structures of eukaryotic translation initiation factor 5A from Methanococcus jannaschii at 1.8 A resolution. Proc. Natl. Acad. Sci. USA 95:10419-10424. [PMC free article] [PubMed] [Google Scholar]

92. Koc, E. C., and L. L. Spremulli. 2002. Identification of mammalian mitochondrial translational initiation factor 3 and examination of its role in initiation complex formation with natural mRNAs. J. Biol. Chem. 277:35541-35549. [PubMed] [Google Scholar]

93. Koradi, R., M. Billeter, and K. Wuthrich. 1996. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14:29-32, 51-55. [PubMed] [Google Scholar]

94. Kozak, M. 1983. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 47:1-45. [PMC free article] [PubMed] [Google Scholar]

95. Kozak, M. 1999. Initiation of translation in prokaryotes and eukaryotes. Gene 234:187-208. [PubMed] [Google Scholar]

96. Krafft, C., A. Diehl, S. Laettig, J. Behlke, U. Heinemann, C. L. Pon, C. O. Gualerzi, and H. Welfle. 2000. Interaction of fMet-tRNA(fMet) with the C-terminal domain of translational initiation factor IF2 from Bacillus stearothermophilus. FEBS Lett. 471:128-132. [PubMed] [Google Scholar]

97. Kycia, J. H., V. Biou, F. Shu, S. E. Gerchman, V. Graziano, and V. Ramakrishnan. 1995. Prokaryotic translation initiation factor IF3 is an elongated protein consisting of two crystallizable domains. Biochemistry 34:6183-6187. [PubMed] [Google Scholar]

98. Kyrpides, N. C., and C. R. Woese. 1998. Universally conserved translation initiation factors. Proc. Natl. Acad. Sci. USA 95:224-228. [PMC free article] [PubMed] [Google Scholar]

98a. Laalami, S., A. V. Timofeev, H. Putzer, J. Leautey, and M. Grunberg-Manago. 1994. In vivo study of engineered G-domain mutants of Escherichia coli translation initiation factor IF2. Mol. Microbiol. 11:293-302. [PubMed] [Google Scholar]

99. Lake, J. A. 1976. Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes. J. Mol. Biol. 105:131-139. [PubMed] [Google Scholar]

100. Larigauderie, G., S. Laalami, N. R. Nyengaard, M. Grunberg-Manago, Y. Cenatiempo, K. K. Mortensen, and H. U. Sperling-Petersen. 2000. Mutation of Thr445 and Ile500 of initiation factor 2 G-domain affects Escherichia coli growth rate at low temperature. Biochimie 82:1091-1098. [PubMed] [Google Scholar]

101. La Teana, A., C. O. Gualerzi, and R. Brimacombe. 1995. From stand-by to decoding site. Adjustment of the mRNA on the 30S ribosomal subunit under the influence of the initiation factors. RNA 1:772-782. [PMC free article] [PubMed] [Google Scholar]

102. La Teana, A., C. O. Gualerzi, and A. E. Dahlberg. 2001. Initiation factor IF 2 binds to the alpha-sarcin loop and helix 89 of Escherichia coli 23S ribosomal RNA. RNA 7:1173-1179. [PMC free article] [PubMed] [Google Scholar]

103. La Teana, A., C. L. Pon, and C. O. Gualerzi. 1996. Late events in translation initiation. Adjustment of fMet-tRNA in the ribosomal P-site. J. Mol. Biol. 256:667-675. [PubMed] [Google Scholar]

104. Laursen, B. S., A. C. Kjærgaard, K. K. Mortensen, D. W. Hoffman, and H. U. Sperling-Petersen. 2004. The N-terminal domain (IF2N) of bacterial translation initiation factor IF2 is connected to the conserved C-terminal domains by a flexible linker. Protein Sci. 13:230-239. [PMC free article] [PubMed] [Google Scholar]

105. Laursen, B. S., K. K. Mortensen, H. U. Sperling-Petersen, and D. W. Hoffman. 2003. A conserved structural motif at the N terminus of bacterial translation initiation factor IF2. J. Biol. Chem. 278:16320-16328. [PubMed] [Google Scholar]

106. Laursen, B. S., I. Siwanowicz, G. Larigauderie, J. Hedegaard, K. Ito, Y. Nakamura, K. K. Mortensen, and H. U. Sperling-Petersen. 2002. Characterization of mutations in the GTP-binding domain of IF2 resulting in cold-sensitive growth of Escherichia coli. J. Mol. Biol. 326:543-551. [PubMed] [Google Scholar]

107. Laursen, B. S., S. A. Steffensen, J. Hedegaard, J. M. Moreno, K. K. Mortensen, and H. U. Sperling-Petersen. 2002. Structural requirements of the mRNA for intracistronic translation initiation of the enterobacterial infB gene. Genes Cells 7:901-910. [PubMed] [Google Scholar]

108. Lelong, J. C., M. Grunberg-Manago, J. Dondon, D. Gros, and F. Gros. 1970. Interaction between guanosine derivatives and factors involved in the initiation of protein synthesis. Nature 226:505-510. [PubMed] [Google Scholar]

109. Lesage, P., C. Chiaruttini, M. Graffe, J. Dondon, M. Milet, and M. Springer. 1992. Messenger RNA secondary structure and translational coupling in the Escherichia coli operon encoding translation initiation factor IF3 and the ribosomal proteins, L35 and L20. J. Mol. Biol. 228:366-386. [PubMed] [Google Scholar]

110. Lesage, P., H. N. Truong, M. Graffe, J. Dondon, and M. Springer. 1990. Translated translational operator in Escherichia coli. Auto-regulation in the infC-rpmI-rplT operon. J. Mol. Biol. 213:465-475. [PubMed] [Google Scholar]

111. Li, W., and D. W. Hoffman. 2001. Structure and dynamics of translation initiation factor aIF-1A from the archaeon Methanococcus jannaschii determined by NMR spectroscopy. Protein Sci. 10:2426-2438. [PMC free article] [PubMed] [Google Scholar]

112. Lin, Q., N. J. Yu, and L. L. Spremulli. 1996. Expression and functional analysis of Euglena gracilis chloroplast initiation factor 3. Plant Mol. Biol. 32:937-945. [PubMed] [Google Scholar]

113. Lockwood, A. H., P. R. Chakraborty, and U. Maitra. 1971. A complex between initiation factor IF2, guanosine triphosphate, and fMet-tRNA: an intermediate in initiation complex formation. Proc. Natl. Acad. Sci. USA 68:3122-3126. [PMC free article] [PubMed] [Google Scholar]

114. Lockwood, A. H., P. Sarkar, and U. Maitra. 1972. Release of polypeptide chain initiation factor IF-2 during initiation complex formation. Proc. Natl. Acad. Sci. USA 69:3602-3605. [PMC free article] [PubMed] [Google Scholar]

115. Luchin, S., H. Putzer, J. W. Hershey, Y. Cenatiempo, M. Grunberg-Manago, and S. Laalami. 1999. In vitro study of two dominant inhibitory GTPase mutants of Escherichia coli translation initiation factor IF2. Direct evidence that GTP hydrolysis is necessary for factor recycling. J. Biol. Chem. 274:6074-6079. [PubMed] [Google Scholar]

116. Reference deleted.

117. MacKeen, L. A., L. Kahan, A. J. Wahba, and I. Schwartz. 1980. Photochemical cross-linking of initiation factor-3 to Escherichia coli 30 S ribosomal subunits. J. Biol. Chem. 255:10526-10531. [PubMed] [Google Scholar]

118. Majumdar, A., K. K. Bose, and N. K. Gupta. 1976. Specific binding of Escherichia coli chain initiation factor 2 to fMet-tRNAfMet. J. Biol. Chem. 251:137-140. [PubMed] [Google Scholar]

119. Mangroo, D., X. Q. Wu, and U. L. RajBhandary. 1995. Escherichia coli initiator tRNA: structure-function relationships and interactions with the translational machinery. Biochem. Cell Biol. 73:1023-1031. [PubMed] [Google Scholar]

120. Marintchev, A., V. G. Kolupaeva, T. V. Pestova, and G. Wagner. 2003. Mapping the binding interface between human eukaryotic initiation factors IA and 5B: a new interaction between old partners. Proc. Natl. Acad. Sci. USA 100:1535-1540. [PMC free article] [PubMed] [Google Scholar]

121. Marzi, S., W. Knight, L. Brandi, E. Caserta, N. Soboleva, W. E. Hill, C. O. Gualerzi, and J. S. Lodmell. 2003. Ribosomal localization of translation initiation factor IF2. RNA 9:958-969. [PMC free article] [PubMed] [Google Scholar]

122. Mayer, C., C. Kohrer, E. Kenny, C. Prusko, and U. L. RajBhandary. 2003. Anticodon sequence mutants of Escherichia coli initiator tRNA: effects of overproduction of aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, and initiation factor 2 on activity in initiation. Biochemistry 42:4787-4799. [PubMed] [Google Scholar]

123. McCarthy, J. E., and R. Brimacombe. 1994. Prokaryotic translation: the interactive pathway leading to initiation. Trends Genet. 10:402-407. [PubMed] [Google Scholar]

124. McCutcheon, J. P., R. K. Agrawal, S. M. Philips, R. A. Grassucci, S. E. Gerchman, W. M. Clemons, Jr., V. Ramakrishnan, and J. Frank. 1999. Location of translational initiation factor IF3 on the small ribosomal subunit. Proc. Natl. Acad. Sci. USA 96:4301-4306. [PMC free article] [PubMed] [Google Scholar]

125. Mechulam, Y., E. Schmitt, L. Maveyraud, C. Zelwer, O. Nureki, S. Yokoyama, M. Konno, and S. Blanquet. 1999. Crystal structure of Escherichia coli methionyl-tRNA synthetase highlights species-specific features. J. Mol. Biol. 294:1287-1297. [PubMed] [Google Scholar]

126. Meinnel, T., J. M. Guillon, Y. Mechulam, and S. Blanquet. 1993. The Escherichia coli fmt gene, encoding methionyl-tRNA(fMet) formyltransferase, escapes metabolic control. J. Bacteriol. 175:993-1000. [PMC free article] [PubMed] [Google Scholar]

127. Meinnel, T., C. Sacerdot, M. Graffe, S. Blanquet, and M. Springer. 1999. Discrimination by Escherichia coli initiation factor IF3 against initiation on non-canonical codons relies on complementarity rules. J. Mol. Biol. 290:825-837. [PubMed] [Google Scholar]

128. Meunier, S., R. Spurio, M. Czisch, R. Wechselberger, M. Guenneugues, C. O. Gualerzi, and R. Boelens. 2000. Structure of the fMet-tRNA(fMet)-binding domain of B. stearothermophilus initiation factor IF2. EMBO J. 19:1918-1926. [PMC free article] [PubMed] [Google Scholar]

129. Miranda-Rios, J., M. Navarro, and M. Soberon. 2001. A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria. Proc. Natl. Acad. Sci. USA 98:9736-9741. [PMC free article] [PubMed] [Google Scholar]

130. Misselwitz, R., K. Welfle, C. Krafft, H. Welfle, L. Brandi, E. Caserta, and C. O. Gualerzi. 1999. The fMet-tRNA binding domain of translational initiation factor IF2: role and environment of its two Cys residues. FEBS Lett. 459:332-336. [PubMed] [Google Scholar]

131. Moazed, D., J. M. Robertson, and H. F. Noller. 1988. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334:362-364. [PubMed] [Google Scholar]

132. Moazed, D., R. R. Samaha, C. Gualerzi, and H. F. Noller. 1995. Specific protection of 16 S rRNA by translational initiation factors. J. Mol. Biol. 248:207-210. [PubMed] [Google Scholar]

133. Moll, I., S. Grill, C. O. Gualerzi, and U. Blasi. 2002. Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control. Mol. Microbiol. 43:239-246. [PubMed] [Google Scholar]

134. Moll, I., M. Huber, S. Grill, P. Sairafi, F. Mueller, R. Brimacombe, P. Londei, and U. Blasi. 2001. Evidence against an interaction between the mRNA downstream box and 16S rRNA in translation initiation. J. Bacteriol. 183:3499-3505. [PMC free article] [PubMed] [Google Scholar]

135. Moreau, M., E. de Cock, P. L. Fortier, C. Garcia, C. Albaret, S. Blanquet, J. Y. Lallemand, and F. Dardel. 1997. Heteronuclear NMR studies of E. coli translation initiation factor IF3. Evidence that the inter-domain region is disordered in solution. J. Mol. Biol. 266:15-22. [PubMed] [Google Scholar]

136. Moreno, J. M., L. Drskjotersen, J. E. Kristensen, K. K. Mortensen, and H. U. Sperling-Petersen. 1999. Characterization of the domains of E. coli initiation factor IF2 responsible for recognition of the ribosome. FEBS Lett. 455:130-134. [PubMed] [Google Scholar]

137. Moreno, J. M., J. Kildsgaard, I. Siwanowicz, K. K. Mortensen, and H. U. Sperling-Petersen. 1998. Binding of Escherichia coli initiation factor IF2 to 30S ribosomal subunits: a functional role for the N-terminus of the factor. Biochem. Biophys. Res. Commun. 252:465-471. [PubMed] [Google Scholar]

138. Moreno, J. M., H. P. Sørensen, K. K. Mortensen, and H. U. Sperling-Petersen. 2000. Macromolecular mimicry in translation initiation: a model for the initiation factor IF2 on the ribosome. IUBMB Life 50:347-354. [PubMed] [Google Scholar]

139. Mortensen, K. K., E. Hajnsdorf, P. Regnier, and H. U. Sperling-Petersen. 1995. Improved recombinant tandem expression of translation initiation factor IF2 in RNASE E deficient E. coli cells. Biochem. Biophys. Res. Commun. 214:1254-1259. [PubMed] [Google Scholar]

140. Mortensen, K. K., J. Kildsgaard, J. M. Moreno, S. A. Steffensen, J. Egebjerg, and H. U. Sperling-Petersen. 1998. A six-domain structural model for Escherichia coli translation initiation factor IF2. Characterisation of twelve surface epitopes. Biochem. Mol. Biol. Int. 46:1027-1041. [PubMed] [Google Scholar]

141. Muralikrishna, P., and E. Wickstrom. 1989. Escherichia coli initiation factor 3 protein binding to 30S ribosomal subunits alters the accessibility of nucleotides within the conserved central region of 16S rRNA. Biochemistry 28:7505-7510. [PubMed] [Google Scholar]

142. Nahvi, A., N. Sudarsan, M. S. Ebert, X. Zou, K. L. Brown, and R. R. Breaker. 2002. Genetic control by a metabolite binding mRNA. Chem. Biol. 9:1043. [PubMed] [Google Scholar]

143. Nakamura, Y., J. Plumbridge, J. Dondon, and M. Grunberg-Manago. 1985. Evidence for autoregulation of the nusA-infB operon of Escherichia coli. Gene 36:189-193. [PubMed] [Google Scholar]

144. Newton, D. T., C. Creuzenet, and D. Mangroo. 1999. Formylation is not essential for initiation of protein synthesis in all eubacteria. J. Biol. Chem. 274:2214-22146. [PubMed] [Google Scholar]

145. Nissen, P., J. Hansen, N. Ban, P. B. Moore, and T. A. Steitz. 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289:920-930. [PubMed] [Google Scholar]

146. Nissen, P., J. A. Ippolito, N. Ban, P. B. Moore, and T. A. Steitz. 2001. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. USA 98:4899-4903. [PMC free article] [PubMed] [Google Scholar]

147. Nissen, P., M. Kjeldgaard, S. Thirup, G. Polekhina, L. Reshetnikova, B. F. Clark, and J. Nyborg. 1995. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270:1464-1472. [PubMed] [Google Scholar]

148. Nogueira, T., and M. Springer. 2000. Post-transcriptional control by global regulators of gene expression in bacteria. Curr. Opin. Microbiol 3:154-158. [PubMed] [Google Scholar]

149. Noller, H. F., J. Kop, V. Wheaton, J. Brosius, R. R. Gutell, A. M. Kopylov, F. Dohme, W. Herr, D. A. Stahl, R. Gupta, and C. R. Waese. 1981. Secondary structure model for 23S ribosomal RNA. Nucleic Acids Res. 9:6167-6189. [PMC free article] [PubMed] [Google Scholar]

150. Noller, H. F., M. M. Yusupov, G. Z. Yusupova, A. Baucom, and J. H. Cate. 2002. Translocation of tRNA during protein synthesis. FEBS Lett. 514:11-16. [PubMed] [Google Scholar]

151. Nonato, M. C., J. Widom, and J. Clardy. 2002. Crystal structure of the N-terminal segment of human eukaryotic translation initiation factor 2alpha. J. Biol. Chem. 277:17057-17061. [PubMed] [Google Scholar]

152. Norskov-Lauritsen, N., D. Sandvang, J. Hedegaard, V. Fussing, K. K. Mortensen, H. U. Sperling-Petersen, and H. C. Schonheyder. 2001. Clonal origin of aminoglycoside-resistant Citrobacter freundii isolates in a Danish county. J. Med. Microbiol. 50:636-641. [PubMed] [Google Scholar]

153. Nudler, E., and A. S. Mironov. 2004. The riboswitch control of bacterial metabolism. Trends Biochem. Sci. 29:11-17. [PubMed] [Google Scholar]

154. Nyengaard, N. R., K. K. Mortensen, S. F. Lassen, J. W. Hershey, and H. U. Sperling-Petersen. 1991. Tandem translation of E. coli initiation factor IF2 beta: purification and characterization in vitro of two active forms. Biochem. Biophys. Res. Commun. 181:1572-1579. [PubMed] [Google Scholar]

155. O'Connor, M., T. Asai, C. L. Squires, and A. E. Dahlberg. 1999. Enhancement of translation by the downstream box does not involve base pairing of mRNA with the penultimate stem sequence of 16S rRNA. Proc. Natl. Acad. Sci. USA 96:8973-8978. [PMC free article] [PubMed] [Google Scholar]

156. Ogle, J. M., D. E. Brodersen, W. M. Clemons, Jr., M. J. Tarry, A. P. Carter, and V. Ramakrishnan. 2001. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292:897-902. [PubMed] [Google Scholar]

157. Ogle, J. M., A. P. Carter, and V. Ramakrishnan. 2003. Insights into the decoding mechanism from recent ribosome structures. Trends Biochem. Sci. 28:259-266. [PubMed] [Google Scholar]

158. Ogle, J. M., F. V. Murphy, M. J. Tarry, and V. Ramakrishnan. 2002. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111:721-732. [PubMed] [Google Scholar]

159. Olsen, D. S., E. M. Savner, A. Mathew, F. Zhang, T. Krishnamoorthy, L. Phan, and A. G. Hinnebusch. 2003. Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo. EMBO J. 22:193-204. [PMC free article] [PubMed] [Google Scholar]

160. Olsson, C. L., M. Graffe, M. Springer, and J. W. Hershey. 1996. Physiological effects of translation initiation factor IF3 and ribosomal protein L20 limitation in Escherichia coli. Mol. Gen. Genet. 250:705-714. [PubMed] [Google Scholar]

161. Olsthoorn, R. C., S. Zoog, and J. van Duin. 1995. Coevolution of RNA helix stability and Shine-Dalgarno complementarity in a translational start region. Mol. Microbiol. 15:333-339. [PubMed] [Google Scholar]

162. Pape, T., W. Wintermeyer, and M. Rodnina. 1999. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J. 18:3800-3807. [PMC free article] [PubMed] [Google Scholar]

163. Parmeggiani, A., G. W. Swart, K. K. Mortensen, M. Jensen, B. F. Clark, L. Dente, and R. Cortese. 1987. Properties of a genetically engineered G domain of elongation factor Tu. Proc. Natl. Acad. Sci. USA 84:3141-3145. [PMC free article] [PubMed] [Google Scholar]

164. Pestova, T. V., and C. U. Hellen. 2000. The structure and function of initiation factors in eukaryotic protein synthesis. Cell Mol. Life Sci 57:651-674. [PubMed] [Google Scholar]

165. Pestova, T. V., I. B. Lomakin, J. H. Lee, S. K. Choi, T. E. Dever, and C. U. Hellen. 2000. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403:332-335. [PubMed] [Google Scholar]

166. Petersen, H. U., T. A. Kruse, H. Worm-Leonhard, G. E. Siboska, B. F. Clark, A. S. Boutorin, P. Remy, J. P. Ebel, J. Dondon, and M. Grunberg-Manago. 1981. Study of the interaction of Escherichia coli initiation factor IF2 with formylmethionyl-tRNAMetf by partial digestion with cobra venom ribonuclease. FEBS Lett. 128:161-165. [PubMed] [Google Scholar]

167. Petersen, H. U., T. Roll, M. Grunberg-Manago, and B. F. Clark. 1979. Specific interaction of initiation factor IF2 of E. coli with formylmethionyl-tRNAfMet Biochem. Biophys. Res Commun. 91:1068-1074. [PubMed] [Google Scholar]

168. Petrelli, D., C. Garofalo, M. Lammi, R. Spurio, C. L. Pon, C. O. Gualerzi, and A. La Teana. 2003. Mapping the active sites of bacterial translation initiation factor IF3. J. Mol. Biol. 331:541-556. [PubMed] [Google Scholar]

169. Petrelli, D., A. LaTeana, C. Garofalo, R. Spurio, C. L. Pon, and C. O. Gualerzi. 2001. Translation initiation factor IF3: two domains, five functions, one mechanism? EMBO J. 20:4560-4569. [PMC free article] [PubMed] [Google Scholar]

170. Pioletti, M., F. Schlunzen, J. Harms, R. Zarivach, M. Gluhmann, H. Avila, A. Bashan, H. Bartels, T. Auerbach, C. Jacobi, T. Hartsch, A. Yonath, and F. Franceschi. 2001. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 20:1829-1839. [PMC free article] [PubMed] [Google Scholar]

171. Plumbridge, J. A., J. Dondon, Y. Nakamura, and M. Grunberg-Manago. 1985. Effect of NusA protein on expression of the nusA, infB operon in E. coli. Nucleic Acids Res. 13:3371-3388. [PMC free article] [PubMed] [Google Scholar]

172. Plumbridge, J. A., J. G. Howe, M. Springer, D. Touati-Schwartz, J. W. Hershey, and M. Grunberg-Manago. 1982. Cloning and mapping of a gene for translational initiation factor IF2 in Escherichia coli. Proc. Natl. Acad. Sci. USA 79:5033-5037. [PMC free article] [PubMed] [Google Scholar]

173. Plumbridge, J. A., and M. Springer. 1983. Organization of the Escherichia coli chromosome around the genes for translation initiation factor IF2 (infB) and a transcription termination factor (nusA). J. Mol. Biol. 167:227-243. [PubMed] [Google Scholar]

174. Pon, C. L., and C. O. Gualerzi. 1984. Mechanism of protein biosynthesis in prokaryotic cells. Effect of initiation factor IF1 on the initial rate of 30 S initiation complex formation. FEBS Lett. 175:203-207. [PubMed] [Google Scholar]

175. Pon, C. L., M. Paci, R. T. Pawlik, and C. O. Gualerzi. 1985. Structure-function relationship in Escherichia coli initiation factors. Biochemical and biophysical characterization of the interaction between IF-2 and guanosine nucleotides. J. Biol. Chem. 260:8918-8924. [PubMed] [Google Scholar]

176. Poot, R. A., N. V. Tsareva, I. V. Boni, and J. van Duin. 1997. RNA folding kinetics regulates translation of phage MS2 maturation gene. Proc. Natl. Acad. Sci. USA 94:10110-10115. [PMC free article] [PubMed] [Google Scholar]

177. Preiss, T., and M. W. Hentze. 2003. Starting the protein synthesis machine: eukaryotic translation initiation. Bioessays 25:1201-1211. [PubMed] [Google Scholar]

179. Rajbhandary, U. L., and C. Ming Chow. 1995. Initiator tRNAs and initiation of protein synthesis, p. 511-528. In D. Söll and U. L. Rajbhandary (ed.), tRNA: structure, biosynthesis, and function. American Soceity for Microbiology, Washington, D.C.

180. Ramakrishnan, V. 2002. Ribosome structure and the mechanism of translation. Cell 108:557-572. [PubMed] [Google Scholar]

181. Ramesh, V., C. Mayer, M. R. Dyson, S. Gite, and U. L. RajBhandary. 1999. Induced fit of a peptide loop of methionyl-tRNA formyltransferase triggered by the initiator tRNA substrate. Proc. Natl. Acad. Sci. USA 96:875-880. [PMC free article] [PubMed] [Google Scholar]

182. Richman, N., and J. W. Bodley. 1972. Ribosomes cannot interact simultaneously with elongation factors EF Tu and EF G. Proc. Natl. Acad. Sci. USA 69:686-689. [PMC free article] [PubMed] [Google Scholar]

183. Ringquist, S., S. Shinedling, D. Barrick, L. Green, J. Binkley, G. D. Stormo, and L. Gold. 1992. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol. Microbiol. 6:1219-1229. [PubMed] [Google Scholar]

184. Rodnina, M. V., H. Stark, A. Savelsbergh, H. J. Wieden, D. Mohr, N. B. Matassova, F. Peske, T. Daviter, C. O. Gualerzi, and W. Wintermeyer. 2000. GTPases mechanisms and functions of translation factors on the ribosome. Biol. Chem. 381:377-387. [PubMed] [Google Scholar]

185. Roll-Mecak, A., C. Cao, T. E. Dever, and S. K. Burley. 2000. X-ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell 103:781-792. [PubMed] [Google Scholar]

186. Roll-Mecak, A., B. S. Shin, T. E. Dever, and S. K. Burley. 2001. Engaging the ribosome: universal IFs of translation. Trends Biochem. Sci. 26:705-709. [PubMed] [Google Scholar]

187. Ruff, M., S. Krishnaswamy, M. Boeglin, A. Poterszman, A. Mitschler, A. Podjarny, B. Rees, J. C. Thierry, and D. Moras. 1991. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science 252:1682-1689. [PubMed] [Google Scholar]

188. Sacerdot, C., C. Chiaruttini, K. Engst, M. Graffe, M. Milet, N. Mathy, J. Dondon, and M. Springer. 1996. The role of the AUU initiation codon in the negative feedback regulation of the gene for translation initiation factor IF3 in Escherichia coli. Mol. Microbiol. 21:331-346. [PubMed] [Google Scholar]

189. Sacerdot, C., P. Dessen, J. W. Hershey, J. A. Plumbridge, and M. Grunberg-Manago. 1984. Sequence of the initiation factor IF2 gene: unusual protein features and homologies with elongation factors. Proc. Natl. Acad. Sci. USA 81:7787-7791. [PMC free article] [PubMed] [Google Scholar]

190. Sacerdot, C., G. Fayat, P. Dessen, M. Springer, J. A. Plumbridge, M. Grunberg-Manago, and S. Blanquet. 1982. Sequence of a 1:26-kb DNA fragment containing the structural gene for E. coli initiation factor IF3: presence of an AUU initiator codon. EMBO J. 1:311-315. [PMC free article] [PubMed] [Google Scholar]

191. Sacerdot, C., G. Vachon, S. Laalami, F. Morel-Deville, Y. Cenatiempo, and M. Grunberg-Manago. 1992. Both forms of translational initiation factor IF2 (alpha and beta) are required for maximal growth of Escherichia coli. Evidence for two translational initiation codons for IF2 beta. J. Mol. Biol. 225:67-80. [PubMed] [Google Scholar]

192. Saito, K., L. C. Mattheakis, and M. Nomura. 1994. Post-transcriptional regulation of the str operon in Escherichia coli. Ribosomal protein S7 inhibits coupled translation of S7 but not its independent translation. J. Mol. Biol. 235:111-124. [PubMed] [Google Scholar]

193. Sands, J. F., P. Regnier, H. S. Cummings, M. Grunberg-Manago, and J. W. Hershey. 1988. The existence of two genes between infB and rpsO in the Escherichia coli genome: DNA sequencing and S1 nuclease mapping. Nucleic Acids Res. 16:10803-10816. [PMC free article] [PubMed] [Google Scholar]

194. Schlax, P. J., and D. J. Worhunsky. 2003. Translational repression mechanisms in prokaryotes. Mol. Microbiol. 48:1157-1169. [PubMed] [Google Scholar]

195. Schluenzen, F., A. Tocilj, R. Zarivach, J. Harms, M. Gluehmann, D. Janell, A. Bashan, H. Bartels, I. Agmon, F. Franceschi, and A. Yonath. 2000. Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102:615-623. [PubMed] [Google Scholar]

196. Schmeing, T. M., P. B. Moore, and T. A. Steitz. 2003. Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. RNA 9:1345-1352. [PMC free article] [PubMed] [Google Scholar]

197. Schmitt, E., M. Panvert, S. Blanquet, and Y. Mechulam. 1998. Crystal structure of methionyl-tRNAfMet transformylase complexed with the initiator formyl-methionyl-tRNAfMet. EMBO J. 17:6819-6826. [PMC free article] [PubMed] [Google Scholar]

198. Schneider, T. D., G. D. Stormo, L. Gold; and A. Ehrenfeucht. 1986. Information content of binding sites on nucleotide sequences. J. Mol. Biol. 188:415-431. [PubMed] [Google Scholar]

199. Schweisguth, D. C., and P. B. Moore. 1997. On the conformation of the anticodon loops of initiator and elongator methionine tRNAs. J. Mol. Biol. 267:505-519. [PubMed] [Google Scholar]

200. Sengupta, J., R. K. Agrawal, and J. Frank. 2001. Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proc. Natl. Acad. Sci. USA 98:11991-11996. [PMC free article] [PubMed] [Google Scholar]

201. Seong, B. L., and U. L. RajBhandary. 1987. Escherichia coli formylmethionine tRNA: mutations in GGGCCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop. Proc. Natl. Acad. Sci. USA 84:334-338. [PMC free article] [PubMed] [Google Scholar]

202. Seong, B. L., and U. L. RajBhandary. 1987. Mutants of Escherichia coli formylmethionine tRNA: a single base change enables initiator tRNA to act as an elongator in vitro. Proc. Natl. Acad. Sci. USA 84:8859-8863. [PMC free article] [PubMed] [Google Scholar]

203. Sette, M., R. Spurio, P. van Tilborg, C. O. Gualerzi, and R. Boelens. 1999. Identification of the ribosome binding sites of translation initiation factor IF3 by multidimensional heteronuclear NMR spectroscopy. RNA 5:82-92. [PMC free article] [PubMed] [Google Scholar]

204. Sette, M., P. van Tilborg, R. Spurio, R. Kaptein, M. Paci, C. O. Gualerzi, and R. Boelens. 1997. The structure of the translational initiation factor IF1 from E. coli contains an oligomer-binding motif. EMBO J. 16:1436-1443. [PMC free article] [PubMed] [Google Scholar]

205. Severini, M., T. Choli, A. La Teana, and C. O. Gualerzi. 1992. Proteolysis of Bacillus stearothermophilus IF2 and specific protection by fMet-tRNA. FEBS Lett. 297:226-228. [PubMed] [Google Scholar]

206. Shatsky, I. N., A. V. Bakin, A. A. Bogdanov, and V. D. Vasiliev. 1991. How does the mRNA pass through the ribosome? Biochimie. 73:937-945. [PubMed] [Google Scholar]

207. Shine, J., and L. Dalgarno. 1974. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA 71:1342-1346. [PMC free article] [PubMed] [Google Scholar]

208. Sonenberg, N., J. W. Hershey, and M. B. Mathews. 2000. Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

209. Sørensen, H. P., J. Hedegaard, H. U. Sperling-Petersen, and K. K. Mortensen. 2001. Remarkable conservation of translation initiation factors: IF1/eIF1A and IF2/eIF5B are universally distributed phylogenetic markers. IUBMB Life 51:321-327. [PubMed] [Google Scholar]

210. Sørensen, H. P., B. S. Laursen, K. K. Mortensen, and H. U. Sperling-Petersen. 2002. Bacterial translation initiation—mechanism and regulation. Recent Res. Dev. Biophys. Biochem. 2:243-270. [Google Scholar]

211. Sørensen, H. P., H. Sperling-Petersen, and K. K. Mortensen. 2003. A favorable solubility partner for the recombinant expression of streptavidin. Protein Exp. Purif. 32:252-259. [PubMed] [Google Scholar]

212. Sprengart, M. L., H. P. Fatscher, and E. Fuchs. 1990. The initiation of translation in E. coli: apparent base pairing between the 16s rRNA and downstream sequences of the mRNA. Nucleic Acids Res. 18:1719-1723. [PMC free article] [PubMed] [Google Scholar]

213. Sprengart, M. L., E. Fuchs, and A. G. Porter. 1996. The downstream box: an efficient and independent translation initiation signal in Escherichia coli. EMBO J. 15:665-674. [PMC free article] [PubMed] [Google Scholar]

214. Springer, M., C. Portier, and M. Grunberg-Manago. 1998. RNA mimicry in the translational apparatus, p. 377-413. In R. W. Simons and M. Grunberg-Manago (ed.), RNA structure and function. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

215. Spurio, R., L. Brandi, E. Caserta, C. L. Pon, C. O. Gualerzi, R. Misselwitz, C. Krafft, K. Welfle, and H. Welfle. 2000. The C-terminal subdomain (IF2 C-2) contains the entire fMet-tRNA binding site of initiation factor IF2. J. Biol. Chem. 275:2447-2454. [PubMed] [Google Scholar]

216. Spurio, R., M. Paci, R. T. Pawlik, A. La Teana, B. V. DiGiacco, C. L. Pon, and C. O. Gualerzi. 1991. Site-directed mutagenesis and NMR spectroscopic approaches to the elucidation of the structure-function relationships in translation initiation factors IF1 and IF3. Biochimie 73:1001-1006. [PubMed] [Google Scholar]

217. Steffensen, S. A., A. B. Poulsen, K. K. Mortensen, and H. U. Sperling-Petersen. 1997. E. coli translation initiation factor IF2—an extremely conserved protein. Comparative sequence analysis of the infB gene in clinical isolates of E. coli. FEBS Lett. 419:281-284. [PubMed] [Google Scholar]

218. Steitz, J. A. 1969. Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature 224:957-964. [PubMed] [Google Scholar]

219. Steitz, T. A., and P. B. Moore. 2003. RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem. Sci. 28:411-418. [PubMed] [Google Scholar]

220. Stoffler, G., and M. Stoffler-Meilicke. 1984. Immunoelectron microscopy of ribosomes. Annu. Rev. Biophys. Bioeng. 13:303-330. [PubMed] [Google Scholar]

221. Stormo, G. D., and Y. Ji. 2001. Do mRNAs act as direct sensors of small molecules to control their expression? Proc. Natl. Acad. Sci. USA 98:9465-9467. [PMC free article] [PubMed] [Google Scholar]

222. Stringer, E. A., P. Sarkar, and U. Maitra. 1977. Function of initiation factor 1 in the binding and release of initiation factor 2 from ribosomal initiation complexes in Escherichia coli. J. Biol. Chem. 252:1739-1744. [PubMed] [Google Scholar]

223. Sundari, R. M., E. A. Stringer, L. H. Schulman, and U. Maitra. 1976. Interaction of bacterial initiation factor 2 with initiator tRNA. J. Biol. Chem. 251:3338-3345. [PubMed] [Google Scholar]

224. Sussman, J. K., E. L. Simons, and R. W. Simons. 1996. Escherichia coli translation initiation factor 3 discriminates the initiation codon in vivo. Mol. Microbiol. 21:347-360. [PubMed] [Google Scholar]

225. Szkaradkiewicz, K., T. Zuleeg, S. Limmer, and M. Sprinzl. 2000. Interaction of fMet-tRNAfMet and fMet-AMP with the C-terminal domain of Thermus thermophilus translation initiation factor 2. Eur. J. Biochem. 267:4290-4299. [PubMed] [Google Scholar]

226. Takahashi, S., S. Detrick, A. A. Whiting, A. J. Blaschke-Bonkowksy, Y. Aoyagi, E. E. Adderson, and J. F. Bohnsack. 2002. Correlation of phylogenetic lineages of group B Streptococci, identified by analysis of restriction-digestion patterns of genomic DNA, with infB alleles and mobile genetic elements. J. Infect. Dis. 186:1034-1038. [PubMed] [Google Scholar]

227. Tedin, K., I. Moll, S. Grill, A. Resch, A. Graschopf, C. O. Gualerzi, and U. Blasi. 1999. Translation initiation factor 3 antagonizes authentic start codon selection on leaderless mRNAs. Mol. Microbiol. 31:67-77. [PubMed] [Google Scholar]

228. Thanedar, S., N. V. Kumar, and U. Varshney. 2000. The fate of the initiator tRNAs is sensitive to the critical balance between interacting proteins. J. Biol. Chem. 275:20361-20367. [PubMed] [Google Scholar]

229. Thieringer, H. A., P. G. Jones, and M. Inouye. 1998. Cold shock and adaptation. Bioessays 20:49-57. [PubMed] [Google Scholar]

230. Tiennault-Desbordes, E., Y. Cenatiempo, and S. Laalami. 2001. Initiation factor 2 of Myxococcus xanthus, a large version of prokaryotic translation initiation factor 2. J. Bacteriol. 183:207-213. [PMC free article] [PubMed] [Google Scholar]

231. Tomsic, J., L. A. Vitali, T. Daviter, A. Savelsbergh, R. Spurio, P. Striebeck, W. Wintermeyer, M. V. Rodnina, and C. O. Gualerzi. 2000. Late events of translation initiation in bacteria: a kinetic analysis. EMBO J. 19:2127-2136. [PMC free article] [PubMed] [Google Scholar]

232. Tzareva, N. V., V. I. Makhno, and I. V. Boni. 1994. Ribosome-messenger recognition in the absence of the Shine-Dalgarno interactions. FEBS Lett. 337:189-194. [PubMed] [Google Scholar]

233. Udagawa, T., Y. Shimizu, and T. Ueda. 2004. Evidence for the translation initiation of leaderless mRNAs by the intact 70 S ribosome without its dissociation into subunits in eubacteria. J. Biol. Chem. 279:8539-8546. [PubMed] [Google Scholar]

234. Van Etten, W. J., and G. R. Janssen. 1998. An AUG initiation codon, not codon-anticodon complementarity, is required for the translation of unleadered mRNA in Escherichia coli. Mol. Microbiol. 27:987-1001. [PubMed] [Google Scholar]

235. Varshney, U., C. P. Lee, and U. L. RajBhandary. 1993. From elongator tRNA to initiator tRNA. Proc. Natl. Acad. Sci. USA 90:2305-2309. [PMC free article] [PubMed] [Google Scholar]

236. Varshney, U., and U. L. RajBhandary. 1992. Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli. J. Bacteriol. 174:7819-7826. [PMC free article] [PubMed] [Google Scholar]

237. Vellanoweth, R. L., and J. C. Rabinowitz. 1992. The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol. Microbiol. 6:1105-1114. [PubMed] [Google Scholar]

238. Vetter, I. R., and A. Wittinghofer. 2001. The guanine nucleotide-binding switch in three dimensions. Science 294:1299-1304. [PubMed] [Google Scholar]

239. Vila-Sanjurjo, A., W. K. Ridgeway, V. Seymaner, W. Zhang, S. Santoso, K. Yu, and J. H. Cate. 2003. X-ray crystal structures of the WT and a hyper-accurate ribosome from Escherichia coli. Proc. Natl. Acad. Sci. USA 100:8682-8687. [PMC free article] [PubMed] [Google Scholar]

240. Vitreschak, A. G., D. A. Rodionov, A. A. Mironov, and M. S. Gelfand. 2004. Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet. 20:44-50. [PubMed] [Google Scholar]

241. Vornlocher, H. P., R. Kreutzer, and M. Sprinzl. 1997. Organization of the Thermus thermophilus nusA/infB operon and overexpression of the infB gene in Escherichia coli. Biochimie 79:195-203. [PubMed] [Google Scholar]

242. Wakao, H., P. Romby, J. P. Ebel, M. Grunberg-Manago, C. Ehresmann, and B. Ehresmann. 1991. Topography of the Escherichia coli ribosomal 30S subunit-initiation factor 2 complex. Biochimie 73:991-1000. [PubMed] [Google Scholar]

243. Wakao, H., P. Romby, E. Westhof, S. Laalami, M. Grunberg-Manago, J. P. Ebel, C. Ehresmann, and B. Ehresmann. 1989. The solution structure of the Escherichia coli initiator tRNA and its interactions with initiation factor 2 and the ribosomal 30 S subunit. J. Biol. Chem. 264:20363-20371. [PubMed] [Google Scholar]

244. Weber, M. H., C. L. Beckering, and M. A. Marahiel. 2001. Complementation of cold shock proteins by translation initiation factor IF1 in vivo. J. Bacteriol. 183:7381-7386. [PMC free article] [PubMed] [Google Scholar]

245. Wertheimer, S. J., R. A. Klotsky, and I. Schwartz. 1988. Transcriptional patterns for the thrS-infC-rplT operon of Escherichia coli. Gene 63:309-320. [PubMed] [Google Scholar]

246. Wickstrom, E., H. A. Heus, C. A. Haasnoot, and P. H. van Knippenberg. 1986. Circular dichroism and 500-MHz proton magnetic resonance studies of the interaction of Escherichia coli translational initiation factor 3 protein with the 16S ribosomal RNA 3′ cloacin fragment. Biochemistry 25:2770-2777. [PubMed] [Google Scholar]

247. Wilson, D. N., G. Blaha, S. R. Connell, P. V. Ivanov, H. Jenke, U. Stelzl, Y. Teraoka, and K. H. Nierhaus. 2002. Protein synthesis at atomic resolution: mechanistics of translation in the light of highly resolved structures for the ribosome. Curr. Protein Pept. Sci. 3:1-53. [PubMed] [Google Scholar]

248. Wilson, D. N., and K. H. Nierhaus. 2003. The ribosome through the looking glass. Angew. Chem. Int. Ed. Engl. 42:3464-3486. [PubMed] [Google Scholar]

249. Wimberly, B. T., D. E. Brodersen, W. M. Clemons, Jr., R. J. Morgan-Warren, A. P. Carter, C. Vonrhein, T. Hartsch, and V. Ramakrishnan. 2000. Structure of the 30S ribosomal subunit. Nature 407:327-339. [PubMed] [Google Scholar]

250. Wintermeyer, W., and C. Gualerzi. 1983. Effect of Escherichia coli initiation factors on the kinetics of N-Acphe-tRNAPhe binding to 30S ribosomal subunits. A fluorescence stopped-flow study. Biochemistry 22:690-694. [PubMed] [Google Scholar]

251. Wu, X. Q., and U. L. RajBhandary. 1997. Effect of the amino acid attached to Escherichia coli initiator tRNA on its affinity for the initiation factor IF2 and on the IF2 dependence of its binding to the ribosome. J. Biol. Chem. 272:1891-1895. [PubMed] [Google Scholar]

252. Xia, B., H. Ke, W. Jiang, and M. Inouye. 2002. The Cold Box stem-loop proximal to the 5′-end of the Escherichia coli cspA gene stabilizes its mRNA at low temperature. J. Biol. Chem. 277:6005-6011. [PubMed] [Google Scholar]

253. Yonath, A. 2002. The search and its outcome: high-resolution structures of ribosomal particles from mesophilic, thermophilic, and halophilic bacteria at various functional states. Annu. Rev. Biophys. Biomol. Struct. 31:257-273. [PubMed] [Google Scholar]

254. Yu, N. J., and L. L. Spremulli. 1998. Regulation of the activity of chloroplast translational initiation factor 3 by NH2- and COOH-terminal extensions. J. Biol. Chem. 273:3871-3877. [PubMed] [Google Scholar]

255. Yu, N. J., and L. L. Spremulli. 1997. Structural and mechanistic studies on chloroplast translational initiation factor 3 from Euglena gracilis. Biochemistry 36:14827-14835. [PubMed] [Google Scholar]

256. Yusupov, M. M., G. Z. Yusupova, A. Baucom, K. Lieberman, T. N. Earnest, J. H. Cate, and H. F. Noller. 2001. Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883-896. [PubMed] [Google Scholar]

257. Yusupova, G., J. Reinbolt, H. Wakao, S. Laalami, M. Grunberg-Manago, P. Romby, B. Ehresmann, and C. Ehresmann. 1996. Topography of the Escherichia coli initiation factor 2/fMet-tRNA(f)(Met) complex as studied by cross-linking. Biochemistry 35:2978-2984. [PubMed] [Google Scholar]

258. Yusupova, G. Z., M. M. Yusupov, J. H. Cate, and H. F. Noller. 2001. The path of messenger RNA through the ribosome. Cell 106:233-241. [PubMed] [Google Scholar]

259. Zarivach, R., A. Bashan, F. Schluenzen, J. Harms, M. Pioletti, F. Franceschi, and A. Yonath. 2002. Initiation and inhibition of protein biosynthesis studies at high resolution. Curr. Protein Pept. Sci. 3:55-65. [PubMed] [Google Scholar]

260. Zhang, J., and M. P. Deutscher. 1992. A uridine-rich sequence required for translation of prokaryotic mRNA. Proc. Natl. Acad. Sci. USA 89:2605-2609. [PMC free article] [PubMed] [Google Scholar]

What are the 3 steps of the initiation of translation?

Translation of an mRNA molecule by the ribosome occurs in three stages: initiation, elongation, and termination.

What are the steps of initiation in translation?

Initiation of translation occurs when mRNA, tRNA, and an amino acid meet up inside the ribosome. Once translation has begun, it continues down the line as mRNA shifts along through the ribosome. Each new codon matches with a new tRNA anticodon, bringing in a new amino acid to lengthen the chain.

What are the 3 steps of translation and describe each?

Translation of an mRNA molecule occurs in three stages: initiation, elongation, and termination.

What are the steps of bacterial translation?

Translation is conceptually divided into four phases: initiation, elongation, termination, and ribosome recycling. The ribosome is composed of a large and a small subunit, which are assembled on the translation initiation region (TIR) of the mRNA during the initiation phase of translation.

What is the correct chronological order of the 3 steps of translation from mRNA to a polypeptide?

Initiation: To begin translation, the ribosome on the mRNA must be assembled in the correct direction and the start codon must be found. Elongation: Elongation is when the polypeptide chain gets longer. Termination: Termination is the final step in the translation process.

What are the 3 steps of translation quizlet?

Terms in this set (3).
Initiation. -the ribosomes attaches at a specific site of the mRNA (the short codon-AUG) -The small and large ribosomal subunites combine..
Elongation. -peptide bonds join the amino acids together in sequence. ... .
Termination. -The process ends when a stop codon is reached by tRNA..