How do you calculate the weight of a live carcass?

The yield of edible meat from a beef carcass often comes as a bit of a surprise, even to those that have had their own meat processed for years. A previous article covered dressing percent—the percent of the live animal weight that becomes carcass weight, which for fed beef is usually around 62-64%. In other words, from a 1200 pound steer, you can expect a 740 – 770 pound carcass. But from that carcass there is another significant portion that will not end up in your freezer or in the meat case for consumers. The expected yield of retail cuts from beef carcasses ranges from approximately 55% to 75%, depending on the fatness and muscling of the animal, and the type of cuts produced. A typical 750 carcass with ½ inch of fat over the rib eye and average muscling of a 12-13 square inch rib eye will yield about 65% of the carcass weight as retail cuts (roasts and steaks) and lean trim. So, in other words, you start with a 1200 pound steer, which has a dressing percent of 63%, so that you have a 750 pound carcass. From that you will get about 65% of the carcass weight, or roughly 490 pounds, as boneless, trimmed beef. If you look at that as a percentage of the live weight of the steer you started with, it is approximately 40% of the live weight. Remaining components of the weight are fat trim and bone. Fat can be highly variable, but in the example used, fat would account for approximately 20% of the carcass weight or 12% of the live weight. Bone accounts for the other 15% of carcass weight. Recognize that these are average figures! These can vary considerably due to the fat and lean composition of the animal, as well as the trim level and methods of cutting the meat. However, it does demonstrate that it is a relatively small percentage of the live animal that ends up in the retail meat case as high quality edible meat. This is one factor that helps explain the difference between price per pound of a live animal and price per pound of retail beef. 

If you look further at specific cuts of beef, it becomes even more apparent why some cuts are significantly higher priced in the retail meat case. Again using the example above, and cutting the carcass into primarily boneless steaks and roasts, the highest percentage of carcass weight, or 20-25%, actually ends up as lean trim. This 150 -185 pounds of lean trim would likely be packaged as ground beef. The next highest percentages would come from the chuck and round portions of the carcass. Boneless chuck roasts and steaks would typically account for 10-12% of carcass weight. Round roasts and steaks, including top round, eye of round, knuckle or sirloin tip, and bottom round would account for another 10-12%. However, it is when we look at the “middle meats”, those from the loin and rib, that the percentages are much less. Using a primarily boneless cutting method, you could take home strip loin, tenderloin, sirloin and rib eye steaks. All together, these steaks may add up to 10-12 % of carcass weight. But if you look at individual types of steaks, each one would be less than 3%, with tenderloins even less, at about 1.5% or less of carcass weight. What does that translate to? With a yield of 2.5% for strip loin steaks, that would be 18 pounds of strip steaks. For tenderloin steaks, or filets, a yield of 1.25% would give us 9 pounds of tenderloin steaks. Ever had a great grilled tri-tip? You’ll only get two tri-tip roasts, each weighing about 1 ½ pounds from that 750 pound carcass. 

So, to summarize: A 1200 steer, ½ inch fat, average muscling, yields a 750 pound carcass. The 750 pound carcass yields approximately:

Dressing percentage is one of many factors affecting the value of a slaughter animal. A basic knowledge of dressing percentage is important in understanding slaughter cattle pricing systems and pricing variability. This module explains why dressing percentage is important and discusses the factors that affect it.

Dressing Percentage in Perspective

Dressing percentage is calculated by dividing the warm carcass weight by the shrunk live weight of the animal and expressing the result as a percentage. For example, suppose that an animal delivered to the packing plant weighs 1300 pounds. After being killed, the hide, head, feet and gut are removed. The warm carcass then weighs 767 pounds. The dressing percent of this animal would be 767 divided by 1300 multiplied by 100 equalling 59%. This "59%" represents the meat and skeletal portion of an animal compared to its live weight. Note that the animal is weighed after transportation to the packing plant so that live weight is a shrunk weight. Also note that the carcass is weighed warm as opposed to cold. The dressing percentage for a cold carcass can be 2.0 percentage point lower than the warm carcass dressing percentage for the same carcass.

The industry is interested in animal dressing percentage because it establishes the weight upon which payment is calculated for animals sold on a live weight basis. For example, a 0.5% difference in the dressing percentage between steer A and B shown in Table 1, results in a $12.02 difference in price per animal. The higher yielding animal is worth an extra $0.92 per cwt on a live weight basis.

Table 1. Effect of Dressing Percentages on Animal Value

Steer ASteer BCalculation MethodShrunk liveweight, lbs13001300Delivered to plant weightWarm carcass weight, lbs767760Dressing percent59.0%58.5%(Warm carcass weight / liveweight) x 100Carcass price, $/lb$1.85$1.85Total value per head$1418.95$1406.93Carcass weight X carcass priceLive price per cwt$109.15$108.23Value per cwt, liveweight basis

A higher dressing percentage will not always yield higher dollar returns, so dressing percentages should be considered in relation to other carcass quality factors. For example, suppose a yield grade (YG) 3 steer carcass – one with the lowest grader-estimated lean meat yield of 53% or less - had a dressing percentage that is 1.5% higher than a YG1 steer carcass. However, because the industry does not want over-fat carcasses, showed by the YG 3rating, prices will be discounted. Therefore for the YG3 steer, even though the dressing percentage is higher and the carcass weight is heavier, the total return could be less. See Table 2 below for an example.

Dressing percentages are highly variable because they are influenced by factors such as live weight, fat level, age,gender, diet, breed, distance trucked, and the type of market where cattle are sold.

Table 2. Effect of Changing Grade and Dressing Percent on Animal Value

Steer A
Yield Grade 1Steer B
Yield Grade 3Calculation MethodSlaughter live weight, lb13001360Delivered to plant weightWarm carcass weight, lb760816Dressing percent58.5%60.0%(Warm carcass weight liveweight) x 100Carcass price, $/lb$1.85$1.751Total value per head$1406.93$1428.00Carcass weight x carcass priceLive price per cwt$108.23$105.00Value per head liveweight – per cwt

$0.10/cwt discount for A3

Effect of live weight and fat level on dressing percentage

Dressing percentages increase as live weight or as fat depth increases in feedlot cattle. As feedlot cattle approach finishing weights and condition, the amount of body fat increases at a faster rate than other body components including muscle, bone, hide, viscera or internal organs, and gut contents. Body fat is deposited within the body cavity, within the muscle or meat – called marbling, - and immediately under the hide. Since much of this body fat stays with the carcass at slaughter, increasing body fat results in higher dressing percentages.

Breed Effects

Meaningful comparisons of dressing percentages among breeds are difficult to make without knowing the reasons for the differences. For example, one breed may typically have a higher dressing percentage because that breed tends to carry more finish at a given weight. If body fat is trimmed off, then the dressing percentage may be similar to other breeds.Dairy cattle commonly yield three percentage points less in dressing percentage than beef cattle. Dairy cattle tend to lack both finish and muscularity, and therefore, have a lower dressing percentage.

While dressing percentage differences can be related to mature size, there are other factors such as the weight of the hide, head, feet and viscera, which all have an impact. Breeds such as Hereford or Simmental, which tend to have a heavier hide, head, feet and viscera will have a lower dressing percentage since these body parts are excluded from the carcass weight. By contrast, Angus or Limousin breeds tend to have higher dressing percentages because of the relatively smaller portion of their live weight composed of hide, head, feet and viscera.

Gender Effects

Heifers usually have a 1.5 to 2.0 percentage point lower dressing percentage than steers at a similar fat level. As a whole, heifers tend to carry more waste fat in the udder, around the internal organs and on the carcass than do steers.The difference in dressing percentage between steers and heifers narrows as heifers become fatter than steers. Since heifers mature earlier, they are usually marketed 100 to 150 pounds lighter than steers.

There is a risk that heifers are pregnant at the time of slaughter. Pregnant heifers have a lower dressing percentage than open heifers. The drop in dressing percentage relates to the size of the fetus, the uterus and embryonic tissue and fluids.

At similar weights, steers have more heart and lung and abdominal and kidney fat than bulls. Steers can be expected to have a lower dressing percentage than bulls at similar external fat levels because fat distribution on steers and bulls are different.

Table 3. Relationship of Age, Liveweight, and Fat Level to Dressing Percentage

352390467478Shrunk liveweight, lb995110012781384Warm carcass weight, lb576651766843Minimum fat level, cm0.840.991.091.17Dressing percent58.059.259.960.9

Source: University of Alberta

Diet Effects

Cattle on a high roughage diet, such as hay, silage or pasture, have a lower dressing percentage than cattle on a high proportion grain diet, even if the cattle are marketed at very similar fat levels. At the Lethbridge Research Station,the entire digestive tract of slaughtered steers was weighed. Gut fill, as a percent of live weight, was higher in steers on a hay diet than steers on a grain diet. In this trial, steers on the grain diet had an 8% higher dressing percentage than steers on the hay diet. But when carcass weights were based on body weights, excluding gutfills, there was no difference between steers on either diet.

Other studies have compared Charolais-, Hereford- and Limousin-cross dairy steers on either fast gaining (mostly grain)or slow gaining (mostly roughage) rations. Dressing percentages averaged 2 percentage points higher for the steers on fast gaining rations. Similarly, another study indicated that compared heifers fed ground alfalfa hay (with or without barley grain) and heifers fed a 90% barley grain diet, dressing percentages increased with the grain level fed.

Similarly, another study, that compared heifers fed ground alfalfa hay (with or without barley grain) and heifers fed a 90% barley grain diet, showed dressing percentages increased with the grain level fed.

A study at the University of Alberta also fed bulls and steers a diet containing either 20, 50 or 80% roughage and slaughtered the cattle at either 990 or 1265 pounds live weight. Researchers found that dressing percentages decreased with increasing roughage levels in the diet. The reasons for the decrease were the increased gut fill and reduced amounts of carcass fat with higher roughage levels. Study results are shown in Table 4 below.

Table 4. Effects of Diet on Dressing Percentage and Fat Depth

TreatmentNumberDressing (%)Fat Depth (cm)Slaughter weight 990 lb20% roughage1256.90.6850% roughage1256.90.5780% roughage1255.10.49Slaughter weight 1265 lb20% roughage1160.31.3050% roughage1259.21.1280% roughage1257.20.87

Source: University of Alberta

The Pembina Forage Association marketed 18 steers weighing from 995 to 1220 pounds directly off a grass pasture. The steers had been on pasture for approximately 100 days. All carcasses graded A1 except for one carcass, which was discounted for being a dark cutter. The dressing percentages varied from 52.9 to 56.9% with the average being 54.5%. If feedlot finished steer carcasses dress from 57 to 59%, then this data suggests there can be a 3.5 percentage point reduction in dressing percentages of carcasses marketed directly from pasture.

The number of days an animal spends in the feedlot on a high grain diet influences the dressing percentage. The feedlot industry suggests that even after a minimum 60 days in the feedlot, dressing percentages will be 2% lower than for the more ideal 90 days.

Cull cows marketed directly after weaning a calf may dress out between 48 and 51%. These same cows, after a 60-day high-energy feeding period, could have a dressing percentage as high as 53 to 55%.

Seasonal Effects

Dressing percentages will vary by 1.5 to 3 percentage point throughout the year. The period of highest dressing percentages occurs from May through August. This is a period when feedlot conditions are dry, when calves have been on feed for an extended time, and when calves have a light hair coat. Dressing percentages start declining in September as cattle hair coats thicken and more tag accumulates. Also, yearlings that have been in the feedlot for only 60 to 80 days start coming to market in the late fall. The lowest dressing percentages tend to occur in December and January. Marketings during this period consist mainly of yearlings that have been in the feedlot for less than 100 days, and which have a heavy hair coat and accumulated tag. Dressing percentages increase through March and April as animals shed their winter hair coat and last year's calves begin coming to market. Last year's calves have been on higher grain diets for periods greater than 150 days. Any weather conditions that affect the hair coat of an animal can have an impact on that animal's dressing percentage. For example, rainy weather can dramatically lower dressing percentages, especially if the hair coat is thick.

Canadian and US Differences

The dressing percentage of cattle marketed in Canada will differ from that of similar animals marketed in the United States. The US carcass weight includes the weight of the kidney, pelvic and heart fat, which is not included in the Canadian carcass weight. Dressing percentages for equivalent animals are, therefore, 2.5 to 3.0% higher in the United States than in Canada.

Cattle marketed in the United States, with a typical grade split of 30% Choice, 70% Select to 50% Choice, 50% Select will have a dressing percentage of 2.5 percentage points higher than Canadian grade A1/A2 and 3.0 percentage points higher than Canadian grade A2/A3.

Other Factors

Marketing procedures affect beef carcass yields. A feedlot that is 30 km from a packing plant can have higher dressing percentages than a feedlot 400 km from the plant. The difference in dressing percentages will be related to the difference in shrinkage that occurs while the animals are being transported. If the shrinkage is only gut shrinkage and not tissue or carcass shrinkage, then the difference in dressing percentages is not important for animals sold on a railgrade basis.

Studies at the Lacombe Research Station demonstrated that slaughter weight steers and heifers that fast for 48 or 72 hours prior to slaughter had warm carcass yields nearly 1.0 to 1.5% lower than equivalent cattle slaughtered after a 24-hour fast. This weight loss was attributed to losses in carcass lean, fat and water. Management practices such as quiet, efficient sorting and loading, limiting time in transit, loading trucks to recommended weight, and proper delivery timing at the plant will help reduce the interval that cattle are without feed, and lessen the stress level for long haul animals. This ultimately increases the value of the animal.

Other factors may affect carcass yield, but these are controlled by the packing plant rather than the feedlot, and therefore, the producer price is not directly influenced by these practices. For example, intermittent cold water spray chilling of the carcass can reduce carcass shrink age by 0.7 to 1.5%. Shrouding carcasses can reduce the loss to evaporation by 0.75 to 2.0%. Even carcass spacing within coolers and the feeding of an electrolyte solution to the animal prior to slaughter has shown to influence carcass shrinkage.

Summary

The factors affecting dressing percentage are summarized in Table 5. The results will vary, but the numbers provide a general indication of the influence of these factors. Although the dressing percentage and carcass weight of A2 and A3 grades tends to be higher than for A1 grade, this does not necessarily mean a higher return for the animal. Dressing percentages are highly variable, and influenced by factors such as days on feed, the season and the market where an animal is sold. Producers should analyze sale weights from feedlots to better understand how these factors influence dressing percentages.

Table 5. Example Dressing Percentages for Various Frame Sizes, Sexes and Grades

FrameSex (Weight)YG1Grade YG2 Dressing PercentagesYG3LargeSteer (1200 lb)58.559.259.8Heifer (1050 lb)57.057.758.3MediumSteer (1125 lb)58.058.559.0Heifer (975 lb)56.557.057.5SmallSteer (1050 lb)57.557.7558.0Heifer (900 lb)56.056.2656.5

Note: Dressing percentages given above decline by 2 percentage points for livestock on feed 60 days, by one percentage point for cattle on feed 80 days and are unchanged when cattle are on feed 100 days.

On average, dressing percentages are 0.75 percentage points lower in March, April, September and October; and are 1.5 percentage points lower in November, December, January and February.

Literature Cited

Bailey, C.B.M. 1984. Gut fill affects liveweight gains. Weekly Letter #2606, Lethbridge Research Station,Agriculture Canada.

Beacom, S.E. 1984. A comparison of four system for finishing beef heifers. Research Report, Melfort Research Station, Agriculture Canada, p. 63-71.

Berg, R.T. and R.M. Butterfield. 1976. New concepts of cattle growth. Sydney University Press. Press Bldg.,University of Sydney, Australia.

Fahmy, M.H. 1986. Performance of crossbred beef and dairy steers finished on fast and slow gain feeding regimes. Ag. Can. Canadex publication 420.10.

Johnson, R.D., M.C. Hunt, D.M. Allen, C.L. Kastner, R.J. Danler, and C.C. Shrock. 1988. Moisture uptake during washing and spray chilling of Holstein and beef type steer carcasses. J. Anim. Sci. 66:2180-2184.

Jones, S.D.M., M.A. Price, and G.W. Mathison. 1978. The effects of dietary roughage level on the growth and productivity of intensively fed bulls. 57th Annual University of Alberta Feeders Day Report, p. 22-25.

Jones, S.D.M., J.A. Newman, A.K.W. Tong, A.H. Martin, and W.M. Robertson. 1984. Feedlot performance, carcass composition and efficiency of muscle gain in bulls and steers of difference mature size slaughtered at similar levels of fatness. Can. J. Anim. Sci. 64:621.

Jones, S.D.M., A.L. Schaeffer, A.K.W. Tong, and B.C. Vincent. 1988. The effects of fasting and transportation on beef cattle. 2. Body component changes, carcass composition and meat quality. Livestock Prod'n Sci. 20:25-35.

Price, M.A. 1976. Dressing Percent - What does it mean. Ag. Can. Canadex publication 420.50.

Price, M.A. 1977. The effects of increasing market weight on beef production. 56th Annual University of Alberta Feeders Day Report, p. 64-66.

Schaeffer, A.L., S.D.M. Jones, A.K.W. Tong and B.A. Young. 1989. Effect of transport and electrolyte supplementation on ion concentration, carcass yield and quality in bulls. Can. J. Anim. Sci. In press.

How do you calculate live weight?

Schaeffer's formula: The equation used for calculating live weight was W = (L × G2)/300, where W is body weight in lbs, L is length of the animal from point of shoulder to pin bone in inches, and G is the chest girth of the animal in inches.

What percentage of live weight is carcass weight?

The hot carcass weight (HCW) is the weight of the unchilled carcass in pounds after the head, hide and internal organs have been removed. For most fed cattle, the HCW will be approximately 60 to 64 percent of the live animal slaughter weight.

How do you calculate carcass weight from live weight in sheep?

For example, a lamb weighing 36 kg (80 lb) live will have a carcass weight of 17.1 kg (37.6 lb) if the dressing percent is 47%. These tables can be used to determine on average what live weight is needed to produce a particular carcass weight based on the average dressing percent calculated for the farm.

How is carcass value calculated?

Determine the Base Carcass Value by multiplying the hot carcass weight by the carcass base price and dividing by 100 to convert from prices noted as cwt.