How many electron shells does lead have?

The chemical element lead is classed as an other metal. It has been known since ancient times. Its discoverer and discovery date are unknown.

How many electron shells does lead have?

Data Zone

Classification:Lead is an ‘other metal’Color:bluish grayAtomic weight:207.2State:solidMelting point:327.46 oC, 600.61 KBoiling point:1750 oC, 2023 KElectrons:82Protons:82Neutrons in most abundant isotope:126Electron shells:2,8,18,32,18,4Electron configuration:[Xe] 4f14 5d10 6s2 6p2Density @ 20oC:11.34 g/cm3Show more, including: Heats, Energies, Oxidation,
Reactions, Compounds, Radii, Conductivities

Atomic volume:18.17 cm3/molStructure:fcc: face-centered cubicHardness:1.5 mohsSpecific heat capacity0.13 J g-1 K-1Heat of fusion4.77 kJ mol-1Heat of atomization196 kJ mol-1Heat of vaporization177.9 kJ mol-11st ionization energy715.6 kJ mol-12nd ionization energy1450.5 kJ mol-13rd ionization energy3081.5 kJ mol-1Electron affinity35.1 kJ mol-1Minimum oxidation number-4Min. common oxidation no.0Maximum oxidation number4Max. common oxidation no.4Electronegativity (Pauling Scale)2.33Polarizability volume6.8 Å3Reaction with airmild, w/ht ⇒ PbOReaction with 15 M HNO3mild, ⇒ NOx, Pb(NO3)2Reaction with 6 M HClnoneReaction with 6 M NaOH–Oxide(s)PbO (litharge), PbO2, Pb2O3, Pb3O4Hydride(s)PbH4Chloride(s)PbCl2 & PbCl4Atomic radius180 pmIonic radius (1+ ion)–Ionic radius (2+ ion)133 pmIonic radius (3+ ion)–Ionic radius (1- ion)–Ionic radius (2- ion)–Ionic radius (3- ion)–Thermal conductivity35.3 W m-1 K-1Electrical conductivity4.8 x 106 S m-1Freezing/Melting point:327.46 oC, 600.61 K

Discovery of Lead

Lead has been known since ancient times. We do not know who discovered it.

Its ores are widely distributed and it has a low melting point so it is easily smelted.

It was used in antiquity to make statues, coins, utensils and writing tablets. The Romans also used lead for plumbing.

The Romans called lead ‘plumbum nigrum’ meaning black lead to differentiate it from ‘plumbum album’ meaning white lead. We now call ‘white lead’ tin. Tin sits directly above lead in the periodic table.

Lead’s chemical symbol is Pb, which comes from its Latin name. Our name for the element comes from the Anglo-Saxon word for the metal, ‘lead’.

The image below shows shiny, untarnished lead balls.

How many electron shells does lead have?

 

How many electron shells does lead have?

Uses of lead in the modern world.

How many electron shells does lead have?

Nasa: A cargo tag made of lead was unearthed during excavation of the original colony at Jamestown, Virginia. It is believed to have made the trip from England in 1611.

Appearance and Characteristics

Harmful effects:

Lead and its compounds are poisonous.

Characteristics:

Lead is a bluish-gray, soft, dense metal that has a bright luster when freshly cut.

It tarnishes slowly in moist air to form a dull gray coating.

The metal is highly ductile and malleable.

Lead is extremely resistant to corrosion and is a poor conductor of electricity.

Uses of Lead

Large quantities of lead, both as the metal and as the dioxide, are used in storage batteries.

Lead is also used in cable covering, as ammunition, as electrodes, in solder and as roofing material.

The metal is used as shielding from radiation, e.g. in x-ray rooms and nuclear reactors.

Lead oxide is also used in the manufacture of fine crystal glass.

Historically, lead was used in plumbing.

Tetraethyl lead was used as an anti-knock agent in petrol, and as an additive in paints. These uses have been reduced recently because of environmental concerns about cumulative lead poisoning.

Lead is the 82nd element in the periodic table and its symbol is ‘Pb’. Lead is a classified post-transition metal element. The total number of electrons in lead is eighty-two. These electrons are arranged according to specific rules of different orbits.

The arrangement of electrons in different orbits and orbitals of an atom in a certain order is called electron configuration. The electron configuration of a lead atom can be done in two ways.

  • Electron configuration through orbit (Bohr principle)
  • Electron configuration through orbital (Aufbau principle)

Electron configuration through orbitals follows different principles. For example Aufbau principle, Hund’s principle, and Pauli’s exclusion principle. This article discusses in detail how to easily write the complete electron configuration of lead.

Also discussed is how to draw and write the orbital diagram of lead. Hopefully, after reading this article you will know the details about this topic.

Table of Contents

Lead atom electron configuration through orbit

Scientist Niels Bohr was the first to give an idea of the atom’s orbit. He provided a model of the atom in 1913. The complete idea of the orbit is given there.

The electrons of the atom revolve around the nucleus in a certain circular path. These circular paths are called orbit(shell). These orbits are expressed by n. [n = 1,2,3,4 . . . The serial number of the orbit]

K is the name of the first orbit, L is the second, M is the third, and N is the name of the fourth orbit. The electron holding capacity of each orbit is 2n2.

Shell Number (n)Shell NameElectrons Holding Capacity (2n2)1K22L83M184N32Electron holding capacity of shells

For example,

  1. n = 1 for K orbit.
    The maximum electron holding capacity in K orbit is 2n2 = 2 × 12 = 2.
  2. For L orbit, n = 2.
    The maximum electron holding capacity in L orbit is 2n2 = 2 × 22 = 8.
  3. n=3 for M orbit.
    The maximum electrons holding capacity in M orbit is 2n2 = 2 × 32 = 18.
  4. n=4 for N orbit.
    The maximum electrons holding capacity in N orbit is 2n2 = 2 × 42 = 32.

Therefore, the maximum electron holding capacity in the first shell is two, the second shell is eight and the 3rd shell can have a maximum of eighteen electrons.

How many electron shells does lead have?
Lead atom electron configuration (Bohr model)

The atomic number is the number of electrons in that element. The atomic number of lead is 82. That is, the number of electrons in lead is eighty-two.

Therefore, a lead atom will have two electrons in the first shell, eight in the 2nd orbit, eighteen electrons in the 3rd shell, and thirty-two in the 4th shell.

According to Bohr’s formula, the fifth shell will have twenty-two electrons but the fifth shell of lead will have eighteen electrons and the remaining four electrons will be in the sixth shell.

Therefore, the order of the number of electrons in each shell of the lead(Pb) atom is 2, 8, 18, 32, 18, 4. Electrons can be arranged correctly through orbits from elements 1 to 18.

The electron configuration of an element with an atomic number greater than 18 cannot be properly determined according to the Bohr atomic model. The electron configuration of all the elements can be done through the orbital diagram.

Electron configuration of lead through orbital

Atomic energy shells are subdivided into sub-energy levels. These sub-energy levels are also called orbital. The most probable region of electron rotation around the nucleus is called the orbital.

The sub-energy levels depend on the azimuthal quantum number. It is expressed by ‘l’. The value of ‘l’ is from 0 to (n – 1). The sub-energy levels are known as s, p, d, and f.

Orbit NumberValue of ‘l’Number of subshellsNumber of orbitalSubshell nameElectrons holding capacityElectron configuration10111s21s220
121
32s
2p2
62s2 2p630
1
231
3
53s
3p
3d2
6
103s2 3p6 3d1040
1
2
341
3
5
7
4s
4p
4d
4f2
6
10
144s2 4p6 4d10 4f14Orbital number of the subshell

For example,

  • If n = 1,
    (n – 1) = (1–1) = 0
    Therefore, the value of ‘l’ is 0. So, the sub-energy level is 1s.
  • If n = 2,
    (n – 1) = (2–1) = 1.
    Therefore, the value of ‘l’ is 0, 1. So, the sub-energy levels are 2s, and 2p.
  • If n = 3,
    (n – 1) = (3–1) = 2.
    Therefore, the value of ‘l’ is 0, 1, 2. So, the sub-energy levels are 3s, 3p, and 3d.
  • If n = 4,
    (n – 1) = (4–1) = 3
    Therefore, the value of ‘l’ is 0, 1, 2, 3. So, the sub-energy levels are 4s, 4p, 4d, and 4f.
  • If n = 5,
    (n – 1) = (n – 5) = 4.

Therefore, l = 0,1,2,3,4. The number of sub-shells will be 5 but 4s, 4p, 4d, and 4f in these four subshells it is possible to arrange the electrons of all the elements of the periodic table.

Subshell nameName sourceValue of ‘l’Value of ‘m’
(0 to ± l)Number of orbital (2l+1)Electrons holding capacity
2(2l+1)sSharp0012pPrincipal1−1, 0, +136dDiffuse2−2, −1, 0, +1, +2510fFundamental3−3, −2, −1, 0, +1, +2, +3714Number of electrons in the orbital

The orbital number of the s-subshell is one, three in the p-subshell, five in the d-subshell and seven in the f-subshell. Each orbital can have a maximum of two electrons.

The sub-energy level ‘s’ can hold a maximum of two electrons, ‘p’ can hold a maximum of six electrons, ‘d’ can hold a maximum of ten electrons, and ‘f’ can hold a maximum of fourteen electrons.

How many electron shells does lead have?
Electron configuration via Aufbau principal

Aufbau is a German word, which means building up. The main proponents of this principle are scientists Niels Bohr and Pauli. The Aufbau method is to do electron configuration through the sub-energy level.

The Aufbau principle is that the electrons present in the atom will first complete the lowest energy orbital and then gradually continue to complete the higher energy orbital.

The energy of an orbital is calculated from the value of the principal quantum number ‘n’ and the azimuthal quantum number ‘l’. The orbital for which the value of (n + l) is lower is the low energy orbital and the electron will enter that orbital first.

OrbitalOrbit (n)Azimuthal quantum number (l)Orbital energy (n + l)3d3254s404Energy of orbital

Here, the energy of 4s orbital is less than that of 3d. So, the electron will enter the 4s orbital first and enter the 3d orbital when the 4s orbital is full. The method of entering electrons into orbitals through the Aufbau principle is 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d.

The first two electrons of lead enter the 1s orbital. The s-orbital can have a maximum of two electrons. Therefore, the next two electrons enter the 2s orbital.

The p-orbital can have a maximum of six electrons. So, the next six electrons enter the 2p orbital. The second orbit is now full. So, the remaining electrons will enter the third orbit.

Then two electrons will enter the 3s orbital and the next six electrons will be in the 3p orbital of the third orbit. The 3p orbital is now full. So, the next two electrons will enter the 4s orbital and ten electrons will enter the 3d orbital.

The 3d orbital is now full. So, the next six electrons enter the 4p orbital. Then next ten electrons will enter the 4d orbital. The 4d orbital is now full. So, the next eight electrons enter the 5p and 6s orbital and the next fourteen electrons will enter the 4f orbital.

The 4f orbital is now full of electrons. So, the next ten electrons will enter the 5d orbital and the remaining two electrons will enter the 6p orbital. Therefore, the lead full electron configuration will be 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 6s2 6p2.

How many electron shells does lead have?
Lead electron configuration

Note: The abbreviated electron configuration of lead is [Xe] 4f14 5d10 6s2 6p2. When writing an electron configuration, you have to write serially.

How to write the orbital diagram for lead?

To create an orbital diagram of an atom, you first need to know Hund’s principle and Pauli’s exclusion principle.

Hund’s principle is that electrons in different orbitals with the same energy would be positioned in such a way that they could be in the unpaired state of maximum number and the spin of the unpaired electrons will be one-way.

And Pauli’s exclusion principle is that the value of four quantum numbers of two electrons in an atom cannot be the same. To write the orbital diagram of lead(Pb), you have to do the electron configuration of lead.

Which has been discussed in detail above. 1s is the closest and lowest energy orbital to the nucleus. Therefore, the electron will first enter the 1s orbital.

According to Hund’s principle, the first electron will enter in the clockwise direction and the next electron will enter the 1s orbital in the anti-clockwise direction. The 1s orbital is now filled with two electrons.

How many electron shells does lead have?
Lead orbital diagram

Then the next two electrons will enter the 2s orbital just like the 1s orbital. The next three electrons will enter the 2p orbital in the clockwise direction and the next three electrons will enter the 2p orbital in the anti-clockwise direction.

Then the next two electrons will enter the 3s orbital just like the 1s orbital and the next six electrons will enter the 3p orbital just like the 2p orbital.

The 3p orbital is now full. So, the next two electrons will enter the 4s orbital just like the 1s orbital. Then the next five electrons will enter the 3d orbital in the clockwise direction and the next five electrons will enter the 3d orbital in the anti-clockwise direction.

The 3d orbital is now full. So, the next six electrons will enter the 4p orbital just like the 2p orbital. Then the next two electrons will enter the 5s orbital just like the 1s orbital and the next ten electrons will enter the 4d orbital just like the 3d orbital.

The 4d orbital is now full of electrons. Then the next eight electrons will enter the 5p and 6s orbital just like the 2p and 1s orbital. The 6s orbital is now full of electrons.

So, the next seven electrons will enter the 4f orbital in the clockwise direction and the remaining seven electrons will enter the 4f orbital in the anti-clockwise direction.

The 4f orbital is now full. So, the next ten electrons will enter the 5d orbital just like the 3d orbital and the next two electrons will enter the 6p orbital in the clockwise direction. This is clearly shown in the figure of the orbital diagram of lead.

Lead excited state electron configuration

Atoms can jump from one orbital to another orbital in an excited state. This is called quantum jump.

The ground-state electron configuration of lead is 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 6s2 6p2. In the tin ground-state electron configuration, the last electrons of the 6p orbital are located in the 6px and 6py orbitals.

We already know that the p-subshell has three orbitals. The orbitals are px, py, and pz and each orbital can have a maximum of two electrons.

Then the correct electron configuration of lead(Pb) in the ground state will be 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 6s2 6px1 6py1. This electron configuration shows that the last shell of the lead atom has two unpaired electrons.

So in this case, the valency of lead is 2. When the tin atom is excited, then the lead atom absorbs energy. As a result, an electron in the 6s orbital jumps to the 6pz orbital.

Therefore, the electron configuration of lead(Pb*) in an excited state will be 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 6s1 6px1 6py1 6pz1.

The valency of the element is determined by electron configuration in the excited state. Here, lead has four unpaired electrons. So, the valency of lead is 4.

Lead ion(Pb2+, Pb4+) electron configuration

The electron configuration shows that the last shell of lead has four electrons. Therefore, the valence electrons of lead are four.

There are two types of lead ion. The lead atom exhibits Pb2+ and Pb4+ ions. The elements that form bonds by donating electrons are called cation.

The lead atom donates two electrons in the 6p orbital to form a lead ion(Pb2+). That is, lead is a cation element.

Pb – 2e– → Pb2+

Here, the electron configuration of lead ion(Pb2+) is 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 6s2.

On the other hand, the lead atom donates two electrons in the 6p orbital and two electrons in 6s orbital to convert lead ion(Pb4+).

Pb – 4e– → Pb4+

The electron configuration of lead ion(Pb4+) is 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10.

This electron configuration shows that the lead ion(Pb4+) has five shells and the last shell has eighteen electrons and it achieves a stable electron configuration.

Lead atom exhibit +2 and +4 oxidation states. The oxidation state of the element changes depending on the bond formation.

How many electron shells are there?

The electron shells are labeled K, L, M, N, O, P, and Q; or 1, 2, 3, 4, 5, 6, and 7; going from innermost shell outwards. Electrons in outer shells have higher average energy and travel farther from the nucleus than those in inner shells.

How many outer shells does lead have?

In the case of lead, the 6th or outer shell contains four electrons. As a result, lead has four valence electrons.

Which element has 4 electrons shells?

Carbon ( Cstart text, C, end text), as a group 14 element, has four electrons in its outer shell.