Is cis or trans more stable

$\begingroup$

Recently, while reading about isomers I learned that cis isomers are more stable than trans isomers.

I referred many books as well as searched around the internet but I didn't find a suitable explanation.

Could someone please explain this to me?

Is cis or trans more stable

asked Dec 6, 2014 at 17:33

$\endgroup$

3

$\begingroup$

As far as I am aware, and from a quick browse though some textbooks, the trans isomer is generally more stable than the cis isomer. This is due to the reduced steric hindrance of the substituents in the trans configuration versus the cis configuration. For example trans-but-2-ene is more stable the cis-but-2-ene because there is less steric interference between the two methyl groups either side of the double bond. However, there are exceptions to this rule which I couldn't find a quick explanation for. The rule applies to both cyclic and acyclic compounds although there are some obvious cyclic exceptions such as cyclic alkenes, where the cis isomer is more stable, especially for smaller rings, due to the large ring strain caused by the orientation of the trans isomer. This page has a good illustration of this:

answered Dec 6, 2014 at 18:54

Is cis or trans more stable

$\endgroup$

2

$\begingroup$

  1. Contrary to the generally accepted belief, many cis isomers of olefinic compounds are more stable than their trans isomers. The stable cis form of substituted olefins such is 1–fluoro–1, 3–butadiene and l,4–difluoro–1,3–butadiene as being due to intramolecular van der Waals forces between the substituents [ Angew. Chem. , 75 , 793 (1963) ]. These forces are strong enough to hold the molecules in a cis–preferred configuration despite steric hindrance effects; these effects have been the basis for assuming that the trans form of such molecules is the more stable. But when the substituent atoms are so bulky that they overcome the intramolecular van der Waals forces, then the trans form becomes the more favored structure.

  2. cis cycloalkenes in general are more stable than their trans isomers. The trans double bond causes strong twisting of the ring. Because of the resulting high ring strain small trans cycloalkenes have not been observed and cis isomers show considerable ring strain. However, the latter are sufficiently stable in order to exist. To form a trans isomer the cycloalkene ring must contain at least eight carbons. The energy difference between cis- and trans-cyclooctene is approximately $38.5\ce{kJ.mol^{-1}}$. Eventually, trans isomers become more stable than cis isomers once the ring contains more than eleven carbons. For more details, please see also: http://www.chemgapedia.de/vsengine/vlu/vsc/en/ch/12/oc/vlu_organik/stereochemie/cyclische_stereoisomere.vlu/Page/vsc/en/ch/2/oc/stoffklassen/systematik_struktur/cyclische_verbindungen/carbocyclisch/cycloalkene/physikalische_eigenschaften.vscml.html

Is cis or trans more stable
Is cis or trans more stable

answered Dec 6, 2014 at 19:38

Is cis or trans more stable

Yomen AtassiYomen Atassi

8,6011 gold badge18 silver badges37 bronze badges

$\endgroup$

0

$\begingroup$

cis is more stable than trans as long as no. of constituent C atoms is less than 11. For more than 11 and for acyclic , trans is more stable....the reason is that like radicals and charges repel however for less than11 the repulsion will be balanced best by cis

answered Dec 28, 2016 at 5:54

$\endgroup$

  1. Last updated
  2. Save as PDF
  • Page ID162073
  • Objectives

    After completing this section, you should be able to

    1. explain why cis alkenes are generally less stable than their trans isomers.
    2. explain that catalytic reduction of a cis alkene produces the same alkane as the catalytic reduction of the trans isomer.
    3. explain how heats of hydrogenation (ΔH°hydrog) can be used to show that cis alkenes are less stable than their trans isomers, and discuss, briefly, the limitations of this approach.
    4. arrange a series of alkenes in order of increasing or decreasing stability.
    5. describe, briefly, two of the hypotheses proposed to explain why alkene stability increases with increased substitution. [Note: This problem is a typical example of those instances in science where there is probably no single “correct” explanation for an observed phenomenon.]

    Key Terms

    Make certain that you can define, and use in context, the key terms below.

    • catalytic hydrogenation
    • heat of hydrogenation, (ΔH°hydrog)
    • hyperconjugation

    Study Notes

    The two alkenes, cis-CH3CH=CHCH3 and (CH3)2C=CH2 have similar heats of hydrogenation (−120 kJ/mol and −119 kJ/mol, respectively), and are therefore of similar stability. However, they are both less stable than trans-CH3CH=CHCH3 (−116 kJ/mol).

    You may wonder why an sp2 -sp3 bond is stronger than an sp3-sp3 bond. Bond strength depends on the efficiency with which orbitals can overlap. In general, s orbitals overlap more efficiently than do p orbitals; therefore, the s-s bond in the hydrogen molecule is stronger than the p-p bond in fluorine. In hybrid orbitals, the greater the s character of the orbital, the more efficiently it can overlap: an sp2 orbital, which has a 33% s character, can overlap more effectively than an sp3 orbital, with only 25% s character.

    Hydrogenation

    Alkene hydrogenation is the addition of hydrogen gas (H2) to an alkene which saturates the bond and forms an alkane. Alkene hydrogenation reactions require a transition metal catalyst, such as Pt or Pd, to speed up the reaction. The hydrogenation reaction is used in this section to investigate the stability of alkenes, however, it will be discussed in greater detail in Section 8.7. Hydrogenation reactions are exothermic and the enthalpy change in this reaction is called the heat of hydrogenation (ΔH°hydrog). Since the double bond is breaking in this reaction, the energy released during hydrogenation is proportional to the energy in the double bond of the molecule. By comparing the heat of hydrogenations from a series of alkenes that produce the same alkane, a quantitative measure of relative alkene stabilities can be produced. These experiments will lead to an general understanding of structural features which tend to stabilize or destabilize alkenes.

    The Catalyst

    A catalyst increases the reaction rate by lowering the activation energy of the reaction. Although the catalyst is not consumed in the reaction, it is required to accelerate the reaction sufficiently to be observed in a reasonable amount of time. Catalysts commonly used in alkene hydrogenation are: platinum, palladium, and nickel. The metal catalyst acts as a surface on which the reaction takes place. This increases the rate by putting the reactants in close proximity to each other, facilitating interactions between them. With this catalyst present, the sigma bond of H2 breaks, and the two hydrogen atoms instead bind to the metal (see #2 in the figure below). The \(\pi\) bond of the alkene weakens as it also interacts with the metal (see #3 below).

    Since both the reactants are bound to the metal catalyst, the hydrogen atoms can easily add, one at a time, to the previously double-bonded carbons (see #4 and #5 below). The position of both of the reactants bound to the catalyst makes it so the hydrogen atoms are only exposed to one side of the alkene. This explains why the hydrogen atoms add to same side of the molecule, called syn-addition.

    Figure \(\PageIndex{1}\): Hydrogenation takes place in the presence of a metal catalyst.

    Note

    The catalyst remains intact and unchanged throughout the reaction.

    Heats of Hydrogenation

    The stability of alkene can be determined by measuring the amount of energy associated with the hydrogenation of the molecule. Since the double bond is breaking in this reaction, the energy released in hydrogenation is proportional to the energy in the double bond of the molecule. This is a useful tool because heats of hydrogenation can be measured very accurately. The \(\Delta H^o\) is usually around -30 kcal/mol for alkenes. Stability is simply a measure of energy. Lower energy molecules are more stable than higher energy molecules. More substituted alkenes are more stable than less substituted ones due to hyperconjugation. They have a lower heat of hydrogenation. The following illustrates stability of alkenes with various substituents:

    Cis/Trans Isomers

    Between cis and trans isomers of an alkene, the cis isomer tends to be less stable due to the molecular crowding created nonbonding interaction between two alky groups on the same side of the double bond. The crowding creates steric strain which distorts bond angles creating less effective bond orbital overlap and desabilizing the molecule. Steric strain has previously been seen in gauche interactions in Newman projections (Section 3.7) and 1,3-diaxial interactions in substituted cyclohexanes (Section 4.7). Steric strain is directly related to the size of the species being crowded. The difference in energy between cis and trans 2-butene is 5 kJ/mol, however, this difference would be greater if larger group were being held in the cis position. Two cis-tert-butyl group can create over 40 kJ/mol of steric strain.

    See the following isomers of butene:

    Is cis or trans more stable

    Is cis or trans more stable

    Figure \(\PageIndex{2}\): Trans-2-butene is the most stable because it has the lowest heat of hydrogenation.

    Alkene Stabilization by Alkyl Substituents

    In general, the stability of an alkene increases with the number of alkyl substituents. This effect is due by the combination of two factors:

    Hyperconjugation

    In classical valence-bond theory, electron delocalization can only occur by the parallel overlap of adjacent p orbitals. According to hyperconjugation theory, electron delocalization could also occur by the parallel overlap of p orbitals with adjacent hybridized orbitals participating in sigma bonds. This electron delocalization serves to stabilize the alkene. As the number of alkyl substituents increases, the number of sigma bonds available for hyperconjugation increases, and the alkene tends to become more stabilized. In the example of propene shown below, a p orbital from a sp2 hybridized carbon involved in the double bond interacts with a sp3 hybridized orbital participating in an adjacent C-H sigma bond.

    Is cis or trans more stable

    In a molecular orbital description of hyperconjugation, the electrons in sigma molecular orbitals (C-H or C-C) of alkyl substituens, interact with adjacent unpopulated non-bonding or antibonding molecular orbitals from the double bond. The interaction creates a bonding molecular orbital which extends over the four atom chain (C=C-C-H) involved in hyperconjugation. The expanded molecular orbital helps to stabilize the double bond.

    Is cis or trans more stable

    Bond Stability

    Bond strengths play an important part in determining the overall stability of a molecule. A C-C bond between a sp3 carbon and a sp2 carbon is slightly stronger than a C-C bond between two sp3 carbons. Increasing the number alkyl substituents of a double bond also increases the number of sp3-sp2 C-C bonds making the alkene more stable. This is idea can be clearly seen when comparing the isomers 1-butene and 2-butene. The molecule 1-butene is monosubstituted and contains a sp3-sp3 C-C and a sp3-sp2 C-C bond. The disubstituted, 2-butene, contains 2 sp3-sp2 C-C bonds which contributes to its greater stability.

    Note

    In cycloalkenes smaller than cyclooctene, the cis isomers are more stable than the trans as a result of ring strain.

    Exercise \(\PageIndex{1}\)

    1) Of the three following isomers which would be expected to be the most stable?

    a)

    b)

    c)

    Answer

    1)

    a)

    b)

    c)

    Exercise \(\PageIndex{2}\)

    3-Bromobut-1-ene reacts with hydrogen gas in the presence of a platinum catalyst. What is the name of the product?

    Answer

    2-Bromobutane (numbering changes when alkene is no longer present)

    Exercise \(\PageIndex{3}\)

    Cyclohexene reacts with hydrogen gas in the presence of a palladium catalyst. What is the name of the product?

    Answer

    Cyclohexane

    Exercise \(\PageIndex{4}\)

    What is the stereochemistry (syn or anti addition) of an alkene hydrogenation reaction?

    Answer

    Syn-addition

    Exercise \(\PageIndex{5}\)

    When looking at their heats of hydrogenation, is the cis or the trans isomer generally more stable?

    Answer

    Trans

    Exercise \(\PageIndex{1}\)

    Show the product for the following

    Is cis or trans more stable

    Answer

    Is cis or trans more stable

      References

      1. Fox, Marye Anne, and James K. Whitesell. Organic Chemistry. 3rd ed. Sudbury, MA: Janes and Bartlett Publishers, 2004.
      2. Hanson, James R. Functional Group Chemistry. Bristol, UK: The Royal Society of Chemistry, 2001.
      3. Streitwieser, Andrew Jr., and Clayton H. Heathcock. Introduction to Organic Chemistry. 2nd ed. New York, NY: Macmillan Publishing Co., Inc., 1981.
      4. Vollhardt, Peter C., and Neil E. Schore. Organic Chemistry: Structure and Function. 5th ed. New York, NY: W.H. Freeman and Company, 2007.
      5. Zlatkis, Albert, Eberhard Breitmaier, and Gunther Jung. A Concise Introduction to Organic Chemistry. New York: McGraw-Hill Book Company, 1973.

      Which is more stable cis or trans and why?

      Trans isomer is more stable than cis isomer because in cis isomer, the bulky groups are on the same side of the double bond. The steric repulsion of the groups makes the cis isomer less stable than the trans isomer in which the bulky groups are far apart ( They are on the opposite side of the double bond).

      Is trans or cis less stable?

      The cis isomer is more stable than the trans isomer by approximately 40 kJ mole 1. With an increasing number of CH₂ groups to span the two carbon atoms of the double bond, the strain of the trans isomer becomes less severe.

      Is cis or trans isomer more stable?

      Cis Isomers Can Be More Stable than Trans.

      Is cis more stable than trans alkene?

      Trans alkenes are thermodynamically more stable than cis alkenes due to the less steric hinderance only.