What are the three pigments that contribute to skin color

This shows two melanocytes in the basal layer of skin. You can also see how the prickle cells in the stratum spinosum layers, appear to have a veil of melanin over the nucleus.

Overall skin colour depends on:

  1. Carotene pigments in subcutaneous fat (adipose tissue) (orange-yellow colour).
  2. Amount of blood and how much oxygen its carrying - haemoglobin (red colour).
  3. Amount of a pigment called melanin that there is in the epidermis (brown colour).

Melanin is made by melanocytes.

Up to 8% (1 in every 5 to 10 cells) in the epidermis is a melanocyte (melano means black) make up 8% of the epidermal cells.

Melanocytes make the pigment called melanin. Tyrosine is converted into dihydroxyphenylalanine (DOPA) which is then polymerised into melanin. The melanin pigment binds to protein, and the melanoprotein is transferred along the long dendritic processes of the melanocyte in vesicles (called melanosomes). The tips of these processes are then phagocytosed by the surrounding keratinocytes, which then take up the melanin.

Melanin protects cells from damage by UV, by producing a 'veil' over the nucleus.

Melanocytes are found in the stratum basale layer. About 1 in every 5 to 10 cells in this layer is a melanocyte.

Melanocyte number is the same in all races.

In different races, the number of melanocytes is THE SAME. In light skinned people, the melanin is concentrated deep in the epidermis, particularly in the stratum basale layer. Differences in skin colour depend on how much melanin is produced, the size of the melanosomes, and the degree to which they aggregate. The amount of melanin made can be increased by increasing exposure to UV light. However, albinos cannot make this pigment.

The color of the skin is a commonly used parameter to assess different aspects and conditions of the skin. It depends mainly on its pigment content, on the spectrum of the illuminating light, and on the quality of the cutaneous surface. When light impinges on the skin, a few percents are directly reflected by the surface (specular reflection) whereas entering photons are either absorbed or scattered by different molecules and structures present in the cutaneous layers. The pigments of the skin, also called chromophores, are mainly represented by melanin in the epidermis and by hemoglobin in the dermis. Other molecules such as bilirubin, amino acids, nucleic acids, porphyrins, and carotenoids (endogenously produced) may participate at different levels to the absorbing and reflecting process of the light. The pigmentation of the skin is related to the melanin amount in the keratinocytes. The various contents of melanin in the keratinocytes produce the wide spectrum of human skin color found in the different human races. Two classes of melanins are found in humans: the eumelanins which are brown to black pigments and the phaeomelanins which are yellow to reddish-brown (Fitzpatrick et al. 1979). Melanin absorbs in a decreasing manner from ultraviolet (UV) (highest absorption) to visible light domain. On the other hand, hemoglobin in the dermal microvasculature contributes to the overall skin color with a red dominant for oxygenated hemoglobin and bluish red for reduced hemoglobin. Here again, the hemoglobin contribution to the skin color depends on the melanin amount in the keratinocytes which acts as a neutral filter; it is readily visible in fair-skinned people, and practically not observable in deeply melanized skin (Stamatas et al. 2008; Diffey and Robson 1992).

Keywords

  • Skin Color
  • Skin Pigmentation
  • Multispectral Imaging
  • Pigment Lesion
  • Reflectance Confocal Microscopy

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter

USD   29.95

Price excludes VAT (Canada)
  • DOI: 10.1007/978-3-319-32383-1_5
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Buy Chapter

eBookUSD   749.99Price excludes VAT (Canada)

  • ISBN: 978-3-319-32383-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Buy eBook

Hardcover BookUSD   899.99Price excludes VAT (Canada)

  • ISBN: 978-3-319-32381-7
  • Dispatched in 3 to 5 business days
  • Exclusive offer for individuals only
  • Free shipping worldwide
    Shipping restrictions may apply, check to see if you are impacted.
  • Tax calculation will be finalised during checkout
Buy Hardcover Book

Learn about institutional subscriptions

Fig. 1

What are the three pigments that contribute to skin color

Fig. 2

What are the three pigments that contribute to skin color

Fig. 3

What are the three pigments that contribute to skin color

Fig. 4

What are the three pigments that contribute to skin color

Fig. 5

What are the three pigments that contribute to skin color

Fig. 6

What are the three pigments that contribute to skin color

References

  • Abbas Q, Celebi ME, Fondon GI. Computer-aided pattern classification system for dermoscopy images. Skin Res Technol. 2012;18:278–89.

    CrossRef  PubMed  Google Scholar 

  • Abbas Q, Fondon Garcia I, Celebi ME, Ahmad W, Mushtaq Q. Unified approach for lesion border detection based on mixture modeling and local entropy thresholding. Skin Res Technol. 2013;19:314–9.

    CrossRef  PubMed  Google Scholar 

  • Alghamdi MA, Kumar A, Taïeb A, Ezzedine K. Assessment methods for the evaluation of vitiligo. JEADV. 2012;26:1463–71.

    CAS  PubMed  Google Scholar 

  • Andersen PH, Bjerring P. Nonivasive computerized analysis of skin chromophores in vivo by reflectance spectroscopy. Photodermatol Photoimmunol Photomed. 1990;7:249–57.

    CAS  PubMed  Google Scholar 

  • Andreassi L, Casini L, Simoni S, et al. Measurement of cutaneous colour and assessment of skin type. Photodermatol Photoimmunol Photomed. 1990;7:20–4.

    CAS  PubMed  Google Scholar 

  • Asawanonda P, Taylor CR. Wood’s light in dermatology. Int J Dermatol. 1999;38:801–7.

    CrossRef  CAS  PubMed  Google Scholar 

  • Bornstein M. Color and its measurements. J Soc Cosmet Chem. 1968;19:649–67.

    Google Scholar 

  • Busam KJ, Charles C, Lee G. Halpern AC Morphologic features of melanocytes, pigmented keratinocytes, and melanophages by in vivo confocal scanning laser microscopy. Mod Pathol. 2001;14(9):862–8.

    CrossRef  CAS  PubMed  Google Scholar 

  • Celebi ME, Schaefer G, Iyatomi H, Stoecker WV. Lesion border detection in dermoscopy images. Comput Med Imaging Graph. 2009;33(2):148–53.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Chardon A, Dupont G, Hourseau C, et al. Colorimetric determination of sun-protection-factor. Poster. 15th IFSCC Congress. London. Preprints A/A24. 1988. p. 313–22, 9.

    Google Scholar 

  • Chardon A, Cretois I, Hourseau C. Skin colour typology and suntanning pathways. Int J Cosmet Sci. 1991;13:191–208.

    CrossRef  CAS  PubMed  Google Scholar 

  • Chardon A, Moyal D, Bories MF, et al. Comparing suntans from actual sun using various SPF sunscreens. Cosmet Toiletries. 1993;79:9.

    Google Scholar 

  • Clarys P, Alewaeters K, Lambrecht R, et al. Skin color measurements: comparison between three instruments: the Chromameter®, the DermaSpectrometer® and the Mexameter®. Skin Res Technol. 2000;6:230–8.

    CrossRef  PubMed  Google Scholar 

  • de Rigal J, Abella ML, Giron F, Caisey L, Lefebvre MA. Development and validation of a new Skin Color Chart. Skin Res Technol. 2007;13:101–9.

    CrossRef  PubMed  Google Scholar 

  • Dhawan AP, D'Alessandro B, Patwardhan S, Mullani N. Multispectral optical imaging of skin-lesions for detection of malignant melanomas. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5352–5. doi:10.1109/IEMBS.2009.5334045.

    PubMed  Google Scholar 

  • Diebele I, Bekina A, Derjabo A, Kapostinsh J, Kuzmina I, Spigulis J. Analysis of skin basalioma and melanoma by multispectral imaging. Proc SPIE. 2012; 8427, Biophotonics: Photonic Solutions for Better Health Care III, 842732. 2012 June 1. doi:10.1117/12.922301.

    Google Scholar 

  • Diebele I, Kuzmina I, Lihachev A, Kapostinsh J, Derjabo A, Valeine L, Spigulis J. Clinical evaluation of melanomas and common nevi by spectral imaging. Biomed Opt Express. 2012b;3(3):467–72.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Diffey BL, Robson J. The influence of pigmentation and illumination on the perception of erythema. Photodermatol Photoimmunol Photomed. 1992;9(2):45–7.

    CAS  PubMed  Google Scholar 

  • Diffey BL, Oliver RJ, Farr PM. A portable instrument for quantifying erythema induced by ultraviolet radiation. Br J Dermatol. 1984;III:663–72.

    CrossRef  Google Scholar 

  • Elbaum M, Kopf AW, Rabinovitz HS, Langley RG, Kamino H, Mihm Jr MC, Sober AJ, Peck GL, Bogdan A, Gutkowicz-Krusin D, Greenebaum M, Keem S, Oliviero M, Wang S. Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study. J Am Acad Dermatol. 2001;44(2):207–18.

    CrossRef  CAS  PubMed  Google Scholar 

  • Feather J, Ellis DJ, Leslie G. A portable reflectometer for the rapid quantification of cutaneous haemoglobin and melanin. Phys Med Biol. 1988;33:711–22.

    CrossRef  CAS  PubMed  Google Scholar 

  • Ferguson J, Brown M, Alert D, et al. Collaborative development of a sun protection factor test method: a proposed European standard. Int J Cosmet Sci. 1996;18:203–18.

    CrossRef  CAS  PubMed  Google Scholar 

  • Fitzpatrick TB. The validity and practicality of sun-reactive skin type I through VI (Editorial). Arch Dermatol. 1988;77:219–21.

    Google Scholar 

  • Fitzpatrick TB, Szabo G, Seiji M, et al. Biology of the melanin pigmentary system (section 3, Chapter 14). In: Fitzpatrick TB, Eisen AZ, Wolff K, editors. Dermatology in general medicine. New-York: Mc Graw Hill; 1979. p. 131.

    Google Scholar 

  • Fujii H, Yanagisawa T, Mitsui M, Murakami Y, Yamaguchi M, Ohyama N, Abe T, Yokoi I, Matsuoka Y, Kubota Y. Extraction of acne lesion in acne patients from multispectral images. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:4078–81. doi:10.1109/IEMBS.2008.4650105.

    PubMed  Google Scholar 

  • Fullerton A, Fischer T, Lahti A, et al. Guidelines for measurements of skin colour and erythema. Contact Dermatitis. 1996;31:1–10.

    CrossRef  Google Scholar 

  • Fulton JE. Utilizing the Ultraviolet (UV Detect) camera to enhance the appearance of photodamage and other skin conditions. Dermatol Surg. 1997;23:163–9.

    PubMed  Google Scholar 

  • Galeano J, Jolivot R, Marzani F. Quantification of melanin and hemoglobin in human skin from multispectral image acquisition: use of a neuronal network combined to a non-negative matrix factorization. Appl Comput Math, special issue on Applied Artificial Intelligence and Soft Computing. 2012;11(2):257–70.

    Google Scholar 

  • Garcia A, Fulton JE. The combination of glycolic acid and hydroquinone or kojic acid for the treatment of melasma and related conditions. Dermatol Surg. 1996;22:443–7.

    CAS  PubMed  Google Scholar 

  • Garini Y, Young IT, McNamara G. Spectral imaging: principles and applications. Cytometry A. 2006;69A:735–47.

    CrossRef  Google Scholar 

  • Garnavi R, Aldeen M, Celebi ME, Varigos G, Finch S. Border detection in dermoscopy images using hybrid thresholding on optimized color channels. Comput Med Imaging Graph. 2011;35:105–15.

    CrossRef  PubMed  Google Scholar 

  • Gniadecka M, Wulf HC, Mortensen N, et al. Photoprotection in Vitiligo and Normal Skin. Acta Derm Venereol. 1996;76:429–32.

    CAS  PubMed  Google Scholar 

  • Häggblad E, Petersson H, Ilias MA, Anderson CD, Salerud EG. A diffuse reflectance spectroscopic study of UV-induced erythematous reaction across well-defined borders in human skin. Skin Res Technol. 2010;16:283–90.

    CrossRef  PubMed  Google Scholar 

  • Hermanns JF, Petit L, Hermanns-Lê T, et al. Analytic quantification of phototype-related regional skin complexion. Skin Res Technol. 2001;7:168–71.

    CrossRef  CAS  PubMed  Google Scholar 

  • Hofmann-Wellenhoff R, Pellacani G, Malvehy J, Soyer HP, editors. Reflectance confocal microscopy for skin diseases. Berlin: Springer; 2012.

    Google Scholar 

  • Hurley ME, Guevara IL, Gonzales RM, Pandya AG. Efficacy of glycolic acid peels in the treatment of melasma. Arch Dermatol. 2002;138:1578–82.

    CrossRef  PubMed  Google Scholar 

  • Kang HY, Bahadoran P, Ortonne JP. Reflectance confocal microscopy for pigmentary disorders. Exp Dermatol. 2010a;19(3):233–9.

    CrossRef  PubMed  Google Scholar 

  • Kang HY, le Duff F, Passeron T, Lacour JP, Ortonne JP, Bahadoran P. A noninvasive technique, reflectance confocal microscopy, for the characterization of melanocyte loss in untreated and treated vitiligo lesions. J Am Acad Dermatol. 2010b;63(5):e97–100. No abstract available.

    CrossRef  PubMed  Google Scholar 

  • Kang HY, Bahadoran P, Suzuki I, Zugaj D, Khemis A, Passeron T, Andres P, Ortonne JP. In vivo reflectance confocal microscopy detects pigmentary changes in melasma at a cellular level resolution. Exp Dermatol. 2010c;19(8):e228–33. doi:10.1111/j.1600-0625.2009.01057.x.

    CrossRef  PubMed  Google Scholar 

  • Kimbrough-Green CK, Griffiths CE, Finkel LJ, Hamilton TA, Bulengo-Ransby SM, Ellis CN, et al. Topical retinoic acid (tretinoin) for melasma in black patients. A vehicle-controlledclinical trial. Arch Dermatol. 1994;130:727–33.

    CrossRef  CAS  PubMed  Google Scholar 

  • Kuzmina I, Diebele I, Asare L, Kempele A, Abelite A, Jakovels D, Spigulis J. Multispectral imaging of pigmented and vascular cutaneous malformations: the influence of laser treatment.Proc SPIE. 2010; 7376, Laser Applications in Life Sciences, 73760J. 2010 Nov 24. doi:10.1117/12.873701

    Google Scholar 

  • Lagarrigue SG, George J, Questel E, Lauze C, Meyer N, Lagarde JM, Simon M, Schmitt AM, Serre G, Paul C. In vivo quantification of epidermis pigmentation and dermis papilla density with reflectance confocal microscopy: variations with age and skin phototype. Exp Dermatol. 2012;21(4):281–6.

    CrossRef  PubMed  Google Scholar 

  • Lee G, Lee O, ParkS MJ, Oh C. Quantitative color assessment of dermoscopy images using perceptible color regions. Skin Res Technol. 2012;18:462–70.

    CrossRef  PubMed  Google Scholar 

  • Lim S, Kim SM, Lee YW, Ahn KJ, Choe YB. Change of biophysical properties of the skin caused byultraviolet radiation-induced photodamage in Kore. Skin Res Technol. 2008;14:93–102.

    CAS  PubMed  Google Scholar 

  • Liu Z, Sun J, Smith M, Smith L, Warr R. Unsupervised sub-segmentation for pigmented skin lesions. Skin Res Technol. 2012;18:77–87.

    CrossRef  PubMed  Google Scholar 

  • Lock-Andersen J, Therkildsen P, de Fine Olivarius F, et al. Epidermal thickness, skin pigmentation and constitutive photosensitivity. Photodermatol Photoimmunol Photomed. 1997;13:153–8.

    CrossRef  CAS  PubMed  Google Scholar 

  • Lock-Andersen J, Gniadecka M, de Fine OF, et al. Skin temperature of UV-induced erythema correlated to laser Doppler flowmetry and skin reflectance measured redness. Skin Res Technol. 1998a;4:41–8.

    CrossRef  CAS  PubMed  Google Scholar 

  • Lock-Andersen J, Wulf HC, Knudstorp ND. Skin pigmentation in Caucasian babies is high and evenly distributed throughout the body. Photodermatol Photoimmunol Photomed. 1998b;14:74–6.

    CrossRef  CAS  PubMed  Google Scholar 

  • Lock-Andersen J, Knudstorp ND, Wulf HC. Facultative skin pigmentation in caucasians: an objective biological indicator of lifetime exposure to ultraviolet radiation ? J Med Invest. 1998c;44(3–4):121–6.

    Google Scholar 

  • Masson P, Mérot F. Phototype and ITA° parameters as predictive for determination of MED and SPF in tanned or untanned subjects. Poster; Preprints 17th IFSCC congress, Yokohama, Oct 1992.

    Google Scholar 

  • Meglinski IV, Matcher SJ. Computer simulation of the skin reflectance spectra. Computer Methods Programs Biomed. 2003;70:179–86.

    CrossRef  CAS  Google Scholar 

  • Moyal D, Chardon A, Kollias N. UVA protection efficacy of sunscreens can be determined by the persistent pigment darkening (PPD) method (Part 2). Photodermatol Photoimmunol Photomed. 2000;16:250–5.

    CrossRef  CAS  PubMed  Google Scholar 

  • Paraskevas LR, Halpern AC, Marghoob AA. Utility of the Wood’s light: five cases from a pigmented lesion clinic. Br J Dermatol. 2005;152:1039–44.

    CrossRef  PubMed  Google Scholar 

  • Park SB, Suh DH, Youn JI. A long-term time course of colorimetric evaluation of ultraviolet light-induced skin reactions. Clin Exp Dermatol. 1999;24:315–20.

    CrossRef  CAS  PubMed  Google Scholar 

  • Park ES, Na JI, Kim SO, Huh CH, Youn SW, Park KC. Application of a pigment measuring device –Mexameter – for the differential diagnosis of vitiligo and nevus depigmentosus. Skin Res Technol. 2006;12:298–302.

    CrossRef  PubMed  Google Scholar 

  • Piérard GE. EEMCO guidance for the assessment of skin colour. J Eur Acad Dermatol Venerol. 1998;10:1–11.

    Google Scholar 

  • Prigent S, Descombes X, Zugaj D, Petit L, Dugaret AS, Martel P, Zerubia J. Skin lesion evaluation from multispectral images. Hal-00757039, version 1–26 Nov 2012 – INRIA research report no 8196 – Nov 2012, 20 p.

    Google Scholar 

  • Quinzán I, Sotoca JM, Latorre-Carmona P, Pla F, García-Sevilla P, Boldó E. Band selection in spectral imaging for non-invasive melanoma diagnosis. Biomed Opt Express. 2013;4(4):514–9. doi:10.1364/BOE.4.000514. Epub 2013 Mar 4.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Randeberg LL, Baarstad I, Løke T, Kaspersen P, Svaasand LO. Hyperspectral imaging of bruised skin. Proc SPIE 6078, Photonic Therapeutics and Diagnostics II, 60780O. 2006 Feb 22. doi:10.1117/12.646557.

    Google Scholar 

  • Roh K-Y, Kim D, Ha S-J, et al. Pigmentation in Koreans: study of the differences from Caucasians in age, gender and seasonal variations. Br J Dermatol. 2001;144:94–9.

    CrossRef  CAS  PubMed  Google Scholar 

  • Seitz JC, Withmore CG. Measurement of erythema and tanning response. The time course of UVB and UVC erythema. J Invest Dermatol. 1988;91:454–7.

    CrossRef  Google Scholar 

  • Shakya NM, LeAnder RW, Hinton KA, Stricklin SM, Rader RK, Hagerty J, Stoecker WV. Discrimination of squamous cell carcinoma in situ from seborrheic keratosis by color analysis techniques requires information from scale, scale-crust and surrounding areas in dermoscopy images. Comput Biol Med. 2012;42:1165–9.

    CrossRef  CAS  PubMed  Google Scholar 

  • Smith L, MacNeil S. State of the art in non-invasive imaging of cutaneous melanoma. Skin Res Technol. 2011;17:257–69.

    CrossRef  PubMed  Google Scholar 

  • Stamatas GN, Zmudzka BZ, Kollias N, Beer JZ. Noninvasive measurements of skin pigmentation in situ. Pigment Cell Res. 2004;17:618–26.

    CrossRef  PubMed  Google Scholar 

  • Stamatas GN, Zmudzka BZ, Kollias N, Beer JZ. In vivo measurement of skin erythema and pigmentation: new means of implementation of diffuse reflectance spectroscopy with a commercial instrument. Br J Dermtol. 2008;159:683–90.

    CrossRef  CAS  Google Scholar 

  • Takiwaki H, Overgaard L, Serup J. Comparison of narrow-band reflectance spectrophotometric and tristimulus colorimetric measurements of skin color. Skin Pharmacol. 1994;7:217–55.

    CrossRef  CAS  PubMed  Google Scholar 

  • Taylor S, Westerhof W, Im S, Lim J. Noninvasive techniques for the evaluation of skin color. J Am Acad Dermatol. 2006;54:282–90.

    CrossRef  Google Scholar 

  • Tian Y, Wang YX, Gu WJ, Zhang P, Sun YEY, Liu W. Physical measurement and evaluation of skin color changes under normal condition and post-ultraviolet radiation: a comparison study of Chromameter CM 2500d and Maxmeter MX18. Skin Res Technol. 2011;17:304–8.

    CrossRef  PubMed  Google Scholar 

  • Tsumura N, Haneishi H, Miyake Y. Independent component analysis of skin color image. J Opt Soc Am A. 1999;16:2169–76.

    CrossRef  CAS  Google Scholar 

  • Van der Wal M, Bloemen M, Verhaegen P, Tuinebreijer W, et al. Objective color measurements; clinimetric performance of three devices on normal skin and scar tissue. J Burn Care Res. 2013;34(3):187–94.

    CrossRef  Google Scholar 

  • Wallace VP, Crawford DC, Mortimer PS, et al. Spectrophotometric assessment of pigmented skin lesions: methods and feature selection for evaluation of diagnostic performance. Phys Med Biol. 2000;45(3):735–51.

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang L, Jacques SL, Zheng L. MCML – Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Programs Biomed. 1995;47(2):131–46.

    CrossRef  CAS  PubMed  Google Scholar 

  • Wassermann HP. The colour of human skin. Spectral reflectance versus skin colour. Dermatologica. 1971;143:166–73.

    CrossRef  CAS  PubMed  Google Scholar 

  • Weatherall IL, Coombs BD. Skin color measurements in terms of CIELAB color space values. J Invest Dermatol. 1992;99:468–73.

    CrossRef  CAS  PubMed  Google Scholar 

  • Yoshimura K, Harii K, Masuda Y, Takahashi M, Aoyama T, Iga T. Usefulness of a narrow-band reflectance spectrophotometer in evaluating effects of depigmenting treatment. Aesthetic Plast Surg. 2001;25(2):129–33.

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. CPCAD (Centre de Pharmacologie Clinique Appliquée à la Dermatologie), Hôpital L’ARCHET 2, 151, route de Saint Antoine de Ginestière, 06202, Nice Cedex 3, France

    L. Duteil & K. Roussel

  2. Department of Dermatology, Nice CHU Hôpital Pasteur, 06202, Nice Cedex 3, France

    P. Bahadoran

Authors

  1. L. Duteil

    View author publications

    You can also search for this author in PubMed Google Scholar

  2. K. Roussel

    View author publications

    You can also search for this author in PubMed Google Scholar

  3. P. Bahadoran

    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to L. Duteil .

Editor information

Editors and Affiliations

  1. Department of Dermatology, University Hospital of Besançon, Besançon, France

    Philippe Humbert

  2. Center for Study and Research on the Integuments, Department of Dermatology, University Hospital of Besançon, Besançon, France

    Ferial Fanian

  3. Department of Dermatology, School of Medicine, University of California, San Francisco, California, USA

    Howard I. Maibach

  4. Department of Dermatology, University Hospital of Besançon, Besançon, France

    Pierre Agache

Rights and permissions

Reprints and Permissions

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Duteil, L., Roussel, K., Bahadoran, P. (2017). Skin Color and Pigmentation. In: Humbert, P., Fanian, F., Maibach, H., Agache, P. (eds) Agache's Measuring the Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-32383-1_5

What are the 3 main skin color determining pigments?

Skin color is a blend resulting from the skin chromophores red (oxyhaemoglobin), blue (deoxygenated haemoglobin), yellow-orange (carotene, an exogenous pigment), and brown (melanin).

What are the pigments that contribute to skin color?

Skin color is determined by a pigment (melanin) made by specialized cells in the skin (melanocytes). The amount and type of melanin determines a person's skin color.

What are the three pigments in the skin and how do they contribute to skin color quizlet?

Melanin, hemoglobin, and carotene are three pigments that impart a wide variety of colors to skin. The amount of melanin causes the skin's color to vary from pale yellow to reddish-brown to black.

What are the three colors of melanin?

There are three different types of melanin, including:.
Eumelanin. There are two types of eumelanin: black and brown. ... .
Pheomelanin. This type of melanin pigments your lips, nipples and other pinkish parts of your body. ... .
Neuromelanin..