What does it mean for a gene to be inducible?

  • Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nature Genet. 39, 1512–1516 (2007).

    CAS  PubMed  Google Scholar 

  • Muse, G. W. et al. RNA polymerase is poised for activation across the genome. Nature Genet. 39, 1507–1511 (2007).

    CAS  PubMed  Google Scholar 

  • Kim, T. H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  • Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Nadal, E. & Posas, F. Multilayered control of gene expression by stress-activated protein kinases. EMBO J. 29, 4–13 (2010).

    CAS  PubMed  Google Scholar 

  • Fuda, N. J., Ardehali, M. B. & Lis, J. T. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186–192 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roeder, R. G. Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett. 579, 909–915 (2005).

    CAS  PubMed  Google Scholar 

  • Ptashne, M. & Gann, A. Transcriptional activation by recruitment. Nature 386, 569–577 (1997).

    CAS  PubMed  Google Scholar 

  • Orphanides, G. & Reinberg, D. A unified theory of gene expression. Cell 108, 439–451 (2002). A comprehensive review of all aspects of gene expression, including those that are not described in this Review, such as transcription elongation, pre-mRNA processing and export and protein translation.

    CAS  PubMed  Google Scholar 

  • Traven, A., Jelicic, B. & Sopta, M. Yeast Gal4: a transcriptional paradigm revisited. EMBO Rep. 7, 496–499 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brent, R. & Ptashne, M. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43, 729–736 (1985).

    CAS  PubMed  Google Scholar 

  • Wu, Y., Reece, R. J. & Ptashne, M. Quantitation of putative activator–target affinities predicts transcriptional activating potentials. EMBO J. 15, 3951–3963 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrozza, M. J., John, S., Sil, A. K., Hopper, J. E. & Workman, J. L. Gal80 confers specificity on HAT complex interactions with activators. J. Biol. Chem. 277, 24648–24652 (2002).

    CAS  PubMed  Google Scholar 

  • Blank, T. E., Woods, M. P., Lebo, C. M., Xin, P. & Hopper, J. E. Novel Gal3 proteins showing altered Gal80p binding cause constitutive transcription of Gal4p-activated genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 2566–2575 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yano, K. & Fukasawa, T. Galactose-dependent reversible interaction of Gal3p with Gal80p in the induction pathway of Gal4p-activated genes of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 94, 1721–1726 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Platt, A. & Reece, R. J. The yeast galactose genetic switch is mediated by the formation of a Gal4p–Gal80p–Gal3p complex. EMBO J. 17, 4086–4091 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki-Fujimoto, T. et al. Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p. Mol. Cell. Biol. 16, 2504–2508 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zenke, F. T. et al. Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p. Science 272, 1662–1665 (1996).

    CAS  PubMed  Google Scholar 

  • Jiang, F., Frey, B. R., Evans, M. L., Friel, J. C. & Hopper, J. E. Gene activation by dissociation of an inhibitor from a transcriptional activation domain. Mol. Cell. Biol. 29, 5604–5610 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaumik, S. R. & Green, M. R. SAGA is an essential in vivo target of the yeast acidic activator Gal4p. Genes Dev. 15, 1935–1945 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant, G. O. & Ptashne, M. Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol. Cell 11, 1301–1309 (2003).

    CAS  PubMed  Google Scholar 

  • Larschan, E. & Winston, F. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev. 15, 1946–1956 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuras, L., Borggrefe, T. & Kornberg, R. D. Association of the Mediator complex with enhancers of active genes. Proc. Natl Acad. Sci. USA 100, 13887–13891 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari, A. Z. et al. Transcriptional activating regions target a cyclin-dependent kinase. Proc. Natl Acad. Sci. USA 99, 14706–14709 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koh, S. S., Ansari, A. Z., Ptashne, M. & Young, R. A. An activator target in the RNA polymerase II holoenzyme. Mol. Cell 1, 895–904 (1998).

    CAS  PubMed  Google Scholar 

  • Lemieux, K. & Gaudreau, L. Targeting of Swi/Snf to the yeast GAL1 UAS G requires the Mediator, TAFIIs, and RNA polymerase II. EMBO J. 23, 4040–4050 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaumik, S. R. & Green, M. R. Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo. Mol. Cell. Biol. 22, 7365–7371 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larschan, E. & Winston, F. The Saccharomyces cerevisiae Srb8–Srb11 complex functions with the SAGA complex during Gal4-activated transcription. Mol. Cell Biol. 25, 114–123 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer, J. A., Giniger, E., Maniatis, T. & Ptashne, M. GAL4 activates transcription in Drosophila. Nature 332, 853–856 (1988).

    CAS  PubMed  Google Scholar 

  • Kakidani, H. & Ptashne, M. GAL4 activates gene expression in mammalian cells. Cell 52, 161–167 (1988).

    CAS  PubMed  Google Scholar 

  • De Val, S. et al. Combinatorial regulation of endothelial gene expression by ets and forkhead transcription factors. Cell 135, 1053–1064 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodius, V. A. & Busby, S. J. Positive activation of gene expression. Curr. Opin. Microbiol. 1, 152–159 (1998).

    CAS  PubMed  Google Scholar 

  • Campos, E. I. & Reinberg, D. Histones: annotating chromatin. Annu. Rev. Genet. 43, 559–599 (2009).

    CAS  PubMed  Google Scholar 

  • Archer, T. K., Cordingley, M. G., Wolford, R. G. & Hager, G. L. Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter. Mol. Cell. Biol. 11, 688–698 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Workman, J. L. & Roeder, R. G. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 51, 613–622 (1987).

    CAS  PubMed  Google Scholar 

  • Lorch, Y., LaPointe, J. W. & Kornberg, R. D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49, 203–210 (1987).

    CAS  PubMed  Google Scholar 

  • Knezetic, J. A. & Luse, D. S. The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell 45, 95–104 (1986).

    CAS  PubMed  Google Scholar 

  • Cairns, B. R. The logic of chromatin architecture and remodelling at promoters. Nature 461, 193–198 (2009).

    CAS  PubMed  Google Scholar 

  • Grant, P. A. et al. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11, 1640–1650 (1997).

    CAS  PubMed  Google Scholar 

  • Steger, D. J., Eberharter, A., John, S., Grant, P. A. & Workman, J. L. Purified histone acetyltransferase complexes stimulate HIV-1 transcription from preassembled nucleosomal arrays. Proc. Natl Acad. Sci. USA 95, 12924–12929 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda, K., Steger, D. J., Eberharter, A. & Workman, J. L. Activation domain-specific and general transcription stimulation by native histone acetyltransferase complexes. Mol. Cell. Biol. 19, 855–863 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casamassimi, A. & Napoli, C. Mediator complexes and eukaryotic transcription regulation: an overview. Biochimie 89, 1439–1446 (2007).

    CAS  PubMed  Google Scholar 

  • Kimbrel, E. A. et al. Systematic in vivo structure-function analysis of p300 in hematopoiesis. Blood 114, 4804–4812 (2009).

    CAS  PubMed  Google Scholar 

  • Jiang, H. et al. PCAF interacts with Tax and stimulates Tax transactivation in a histone acetyltransferase-independent manner. Mol. Cell. Biol. 19, 8136–8145 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, H. et al. An array of coactivators is required for optimal recruitment of TATA binding protein and RNA polymerase II by promoter-bound Gcn4p. Mol. Cell. Biol. 24, 4104–4117 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clapier, C. R. & Cairns, B. R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).

    CAS  PubMed  Google Scholar 

  • Bryant, G. O. et al. Activator control of nucleosome occupancy in activation and repression of transcription. PLoS Biol. 6, 2928–2939 (2008). The authors show that there are two mechanisms of nucleosome loss from the Gal genes following exposure to galactose, one of which is dependent on activator-mediated recruitment of the nucleosome-remodelling complex SWI/SNF and a slower pathway that is independent of SWI/SNF. They also confirm that repression can occur at Gal genes in both the presence and absence of nucleosomes, showing that nucleosomes are not essential for repression at inducible promoters.

    CAS  PubMed  Google Scholar 

  • Yudkovsky, N., Logie, C., Hahn, S. & Peterson, C. L. Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. Genes Dev. 13, 2369–2374 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soutoglou, E. & Talianidis, I. Coordination of PIC assembly and chromatin remodeling during differentiation-induced gene activation. Science 295, 1901–1904 (2002).

    CAS  PubMed  Google Scholar 

  • Hassan, A. H., Neely, K. E. & Workman, J. L. Histone acetyltransferase complexes stabilize SWI/SNF binding to promoter nucleosomes. Cell 104, 817–827 (2001).

    CAS  PubMed  Google Scholar 

  • Hassan, A. H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111, 369–379 (2002).

    CAS  PubMed  Google Scholar 

  • Chandy, M., Gutierrez, J. L., Prochasson, P. & Workman, J. L. SWI/SNF displaces SAGA-acetylated nucleosomes. Eukaryot. Cell 5, 1738–1747 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carey, M., Li, B. & Workman, J. L. RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol. Cell 24, 481–487 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinke, H. & Horz, W. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol. Cell 11, 1599–1607 (2003).

    CAS  PubMed  Google Scholar 

  • Steger, D. J., Haswell, E. S., Miller, A. L., Wente, S. R. & O'Shea, E. K. Regulation of chromatin remodeling by inositol polyphosphates. Science 299, 114–116 (2003).

    CAS  PubMed  Google Scholar 

  • Sharma, V. M., Li, B. & Reese, J. C. SWI/SNF-dependent chromatin remodeling of RNR3 requires TAFIIs and the general transcription machinery. Genes Dev. 17, 502–515 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • He, Q., Battistella, L. & Morse, R. H. Mediator requirement downstream of chromatin remodeling during transcriptional activation of CHA1 in yeast. J. Biol. Chem. 283, 5276–5286 (2008).

    CAS  PubMed  Google Scholar 

  • Zhang, H. & Reese, J. C. Exposing the core promoter is sufficient to activate transcription and alter coactivator requirement at RNR3. Proc. Natl Acad. Sci. USA 104, 8833–8838 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adkins, M. W. & Tyler, J. K. Transcriptional activators are dispensable for transcription in the absence of Spt6-mediated chromatin reassembly of promoter regions. Mol. Cell 21, 405–416 (2006).

    CAS  PubMed  Google Scholar 

  • Schwabish, M. A. & Struhl, K. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 24, 10111–10117 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, C. K., Shibata, Y., Rao, B., Strahl, B. D. & Lieb, J. D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nature Genet. 36, 900–905 (2004).

    CAS  PubMed  Google Scholar 

  • Petesch, S. J. & Lis, J. T. Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134, 74–84 (2008). This D. melanogaster study shows that heat shock induces a rapid loss of nucleosomes across the entire Hsp70 locus, and that this nucleosome loss occurs before and is independent of transcription. This is a key finding because it indicates that, although nucleosome disruption is required for optimal levels of Hsp70 expression, nucleosome loss on its own is not sufficient to activate transcription.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, C., Wong, Y. C. & Elgin, S. C. The chromatin structure of specific genes: II. Disruption of chromatin structure during gene activity. Cell 16, 807–814 (1979).

    CAS  PubMed  Google Scholar 

  • Wu, C. The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286, 854–860 (1980).

    CAS  PubMed  Google Scholar 

  • Lis, J. T. Imaging Drosophila gene activation and polymerase pausing in vivo. Nature 450, 198–202 (2007).

    CAS  PubMed  Google Scholar 

  • Winegarden, N. A., Wong, K. S., Sopta, M. & Westwood, J. T. Sodium salicylate decreases intracellular ATP, induces both heat shock factor binding and chromosomal puffing, but does not induce hsp 70 gene transcription in Drosophila. J. Biol. Chem. 271, 26971–26980 (1996).

    CAS  PubMed  Google Scholar 

  • Han, M. & Grunstein, M. Nucleosome loss activates yeast downstream promoters in vivo. Cell 55, 1137–1145 (1988). One of the first studies to show that nucleosome loss could activate transcription in vivo . Using a genetic approach, the authors inactivated histone H4 and found that the promoters of several genes were activated and transcription was initiated independently of the presence of transcriptional activators.

    CAS  PubMed  Google Scholar 

  • Wang, L., Liu, L. & Berger, S. L. Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev. 12, 640–653 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kao, C. F. et al. Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev. 18, 184–195 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J. et al. RAD6-mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137, 459–471 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, W. W. et al. A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol. Cell 11, 261–266 (2003).

    CAS  PubMed  Google Scholar 

  • Wood, A., Schneider, J., Dover, J., Johnston, M. & Shilatifard, A. The Paf1 complex is essential for histone monoubiquitination by the Rad6–Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J. Biol. Chem. 278, 34739–34742 (2003).

    CAS  PubMed  Google Scholar 

  • Robzyk, K., Recht, J. & Osley, M. A. Rad6-dependent ubiquitination of histone H2B in yeast. Science 287, 501–504 (2000).

    CAS  PubMed  Google Scholar 

  • Wood, A. et al. Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol. Cell 11, 267–274 (2003).

    CAS  PubMed  Google Scholar 

  • Ng, H. H., Dole, S. & Struhl, K. The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B. J. Biol. Chem. 278, 33625–33628 (2003).

    CAS  PubMed  Google Scholar 

  • Xiao, T. et al. Histone H2B ubiquitylation is associated with elongating RNA polymerase II. Mol. Cell. Biol. 25, 637–651 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weake, V. M. & Workman, J. L. Histone ubiquitination: triggering gene activity. Mol. Cell 29, 653–663 (2008).

    CAS  PubMed  Google Scholar 

  • Henry, K. W. et al. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 17, 2648–2663 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel, J. A. et al. Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J. Biol. Chem. 279, 1867–1871 (2004).

    CAS  PubMed  Google Scholar 

  • Wyce, A. et al. H2B ubiquitylation acts as a barrier to Ctk1 nucleosomal recruitment prior to removal by Ubp8 within a SAGA-related complex. Mol. Cell 27, 275–288 (2007).

    CAS  PubMed  Google Scholar 

  • Saunders, A., Core, L. J. & Lis, J. T. Breaking barriers to transcription elongation. Nature Rev. Mol. Cell. Biol. 7, 557–567 (2006).

    CAS  Google Scholar 

  • Rougvie, A. E. & Lis, J. T. The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 54, 795–804 (1988).

    CAS  PubMed  Google Scholar 

  • Lis, J. T., Mason, P., Peng, J., Price, D. H. & Werner, J. P-TEFb kinase recruitment and function at heat shock loci. Genes Dev. 14, 792–803 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renner, D. B., Yamaguchi, Y., Wada, T., Handa, H. & Price, D. H. A highly purified RNA polymerase II elongation control system. J. Biol. Chem. 276, 42601–42609 (2001).

    CAS  PubMed  Google Scholar 

  • Law, A., Hirayoshi, K., O'Brien, T. & Lis, J. T. Direct cloning of DNA that interacts in vivo with a specific protein: application to RNA polymerase II and sites of pausing in Drosophila. Nucleic Acids Res. 26, 919–924 (1998).

    CAS  Google Scholar 

  • Boettiger, A. N. & Levine, M. Synchronous and stochastic patterns of gene activation in the Drosophila embryo. Science 325, 471–473 (2009). This paper provides important clues into the possible reason for the presence of paused Pol II on the promoters of developmental control genes. Using in situ hybridizations, the authors found that genes with paused Pol II are activated more synchronously in different cells of the same tissue compared with genes at which the rate-limiting step in transcription occurs at the level of activator-dependent recruitment.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, C. et al. NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila. Mol. Cell. Biol. 28, 3290–3300 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nechaev, S. et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327, 335–338 (2010). This recent study found that short RNAs derived from stalled or paused Pol II are associated with approximately one-third of all D. melanogaster genes. These findings suggest that polymerase pausing might be a general feature of the early stages in the transcription cycle, even if it is not necessarily rate-limiting for all genes.

    CAS  PubMed  Google Scholar 

  • de Nadal, E., Casadome, L. & Posas, F. Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase. Mol. Cell. Biol. 23, 229–237 (2003).

    CAS  PubMed  Google Scholar 

  • Proft, M. et al. Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. EMBO J. 20, 1123–1133 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alepuz, P. M., de Nadal, E., Zapater, M., Ammerer, G. & Posas, F. Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. EMBO J. 22, 2433–2442 (2003). This study showed that, surprisingly, phosphorylation of the target substrate of the Hog1 MAPK in yeast is not required for transcription activation at some genes. Instead recruitment of the MAPK itself is the key step required to activate transcription because artificial tethering of the MAPK to the promoter is sufficient to mediate stress-responsive activation at these genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alepuz, P. M., Jovanovic, A., Reiser, V. & Ammerer, G. Stress-induced MAP kinase Hog1 is part of transcription activation complexes. Mol. Cell 7, 767–777 (2001).

    CAS  PubMed  Google Scholar 

  • Vicent, G. P. et al. Induction of progesterone target genes requires activation of Erk and Msk kinases and phosphorylation of histone H3. Mol. Cell 24, 367–381 (2006).

    CAS  PubMed  Google Scholar 

  • Zhang, H. M. et al. Mitogen-induced recruitment of ERK and MSK to SRE promoter complexes by ternary complex factor Elk-1. Nucleic Acids Res. 36, 2594–2607 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, S. et al. Profiling the human protein–DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 139, 610–622 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Proft, M. et al. The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol. Cell 23, 241–250 (2006).

    CAS  PubMed  Google Scholar 

  • Pascual-Ahuir, A., Struhl, K. & Proft, M. Genome-wide location analysis of the stress-activated MAP kinase Hog1 in yeast. Methods 40, 272–278 (2006).

    CAS  PubMed  Google Scholar 

  • Pokholok, D. K., Zeitlinger, J., Hannett, N. M., Reynolds, D. B. & Young, R. A. Activated signal transduction kinases frequently occupy target genes. Science 313, 533–536 (2006).

    CAS  PubMed  Google Scholar 

  • Mas, G. et al. Recruitment of a chromatin remodelling complex by the Hog1 MAP kinase to stress genes. EMBO J. 28, 326–336 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence, M. C. et al. Multiple chromatin-bound protein kinases assemble factors that regulate insulin gene transcription. Proc. Natl Acad. Sci. USA 106, 22181–22186 (2009). This paper shows that multiple MAPKs bind to the promoter of the insulin gene in human pancreatic β -cells in the presence of the proinflammatory cytokine IL-1 β . MAPKs at promoters of target genes might facilitate rapid switches in gene activation statusbecause these kinases promote activation or repression of insulin transcription depending on the glucose levels in the cellular environment.

  • D'Alessio, J. A., Wright, K. J. & Tjian, R. Shifting players and paradigms in cell-specific transcription. Mol. Cell 36, 924–931 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egloff, S. & Murphy, S. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280–288 (2008).

    CAS  PubMed  Google Scholar 

  • Zimarino, V. & Wu, C. Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis. Nature 327, 727–730 (1987).

    CAS  PubMed  Google Scholar 

  • Westwood, J. T., Clos, J. & Wu, C. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353, 822–827 (1991).

    CAS  PubMed  Google Scholar 

  • Tulin, A. & Spradling, A. Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 299, 560–562 (2003).

    Google Scholar 

  • Tsukiyama, T., Becker, P. B. & Wu, C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367, 525–532 (1994).

    CAS  PubMed  Google Scholar 

  • Wang, Y. V., Tang, H. & Gilmour, D. S. Identification in vivo of different rate-limiting steps associated with transcriptional activators in the presence and absence of a GAGA element. Mol. Cell. Biol. 25, 3543–3552 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, H., Kraus, K. W., Wolfner, M. F. & Lis, J. T. DNA sequence requirements for generating paused polymerase at the start of hsp70. Genes Dev. 6, 284–295 (1992).

    CAS  PubMed  Google Scholar 

  • Wu, C. H. et al. Molecular characterization of Drosophila NELF. Nucleic Acids Res. 33, 1269–1279 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, C. H. et al. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev. 17, 1402–1414 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park, J. M., Werner, J., Kim, J. M., Lis, J. T. & Kim, Y. J. Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock. Mol. Cell 8, 9–19 (2001).

    CAS  PubMed  Google Scholar 

  • Kim, J., Hake, S. B. & Roeder, R. G. The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol. Cell 20, 759–770 (2005).

    CAS  PubMed  Google Scholar 

  • Shilatifard, A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem. 75, 243–269 (2006).

    CAS  PubMed  Google Scholar 

  • Lee, J. S. et al. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 131, 1084–1096 (2007).

    CAS  PubMed  Google Scholar 

  • What is inducible in biology?

    : capable of being formed, activated, or expressed in response to a stimulus especially of a molecular kind: as. a : formed by a cell in response to the presence of its substrate inducible enzymes — compare constitutive sense 1a.

    What is the difference between inducible and repressible genes?

    Some operons are inducible, meaning that they can be turned on by the presence of a particular small molecule. Others are repressible, meaning that they are on by default but can be turned off by a small molecule.

    Why is inducible gene expression important?

    Inducible expression systems are essential molecular tools for production of recombinant proteins in cells, for synthesis and degradation of small molecules catalyzed by the enzymes expressed from the expression system, and for testing the function of unknown genes or proteins in cells.

    Why is it called an inducible operon?

    Inducible operons have proteins that can bind to either activate or repress transcription depending on the local environment and the needs of the cell. The lac operon is a typical inducible operon.