Stress tends to do what to telomeres

Children in orphanages have chromosome changes that could affect future health.

Stress tends to do what to telomeres

The shortened telomeres found in Romanian orphans could lead to health problems later in life. Credit: Image by © BOGDAN CRISTEL/Reuters/Corbis

A long-term study of children from Romanian orphanages suggests that the effects of childhood stress could be visible in their DNA as they grow up.

Children who spent their early years in state-run Romanian orphanages have shorter telomeres than children who grew up in foster care, according to a study published today in Molecular Psychiatry1. Telomeres are buffer regions of non-coding DNA at the ends of chromosomes that prevent the loss of protein-coding DNA when cells divide. Telomeres get slightly shorter each time a chromosome replicates during cell division, but stress can also cause them to shorten. Shorter telomeres are associated with a raft of diseases in adults from diabetes to dementia.

The study is part of the Bucharest Early Intervention Project, a programme started in 2000 by US researchers who aimed to compare the health and development of Romanian children brought up in the stressful environment of an orphanage with those in foster families, where they receive more individual attention and a better quality of care.

When the study began, state orphanages were still common in Romania, and a foster care system was established specifically for this project. The study focused on 136 orphanage children aged between 6 and 30 months, half of whom were randomly assigned to foster families. The other half remained in orphanages.

The researchers obtained DNA samples from the children when they were between 6 and 10 years old, and measured the length of their telomeres. They found that the longer the children had spent in the orphanage in early childhood - before the age of four and half - the shorter their telomeres.

"It shows that being in institutional care affects children right down to the molecular level," says clinical psychiatrist Stacy Drury of Tulane University in New Orleans, Louisiana, one of the lead authors on the study.

Other studies have found short telomeres in adults who said they had experienced childhood psychological stress2,3, but telomere biology in children is still a new field. Drury and her team cannot yet make any comparisons with the telomeres of non-institutionalized children because "we don't yet have a normative template for telomere length in young children", explains paediatrician and senior study author Charles Nelson of Harvard Medical School and the Children's Hospital in Boston. Drury, Nelson and their colleagues are currently measuring telomere length in children who experienced less stress in early childhood.

The team says that many aspects of a child's health can improve if they are moved from institutional care to a family environment. But could this extend to children regrowing their telomeres? Although telomeres usually shorten with age, they can lengthen through the action of an enzyme called telomerase.

Iiris Hovatta of the Research Program of Molecular Neurology at the University of Helsinki, who was not involved in the Romanian study, suggests that shortened telomeres might not be permanent. "Studies in adults have shown that telomere length in some individuals increases over time, and this tends to occur in those people who have shorter telomeres to begin with," says Hovatta.

We might soon know. Drury and her colleagues last week received funding from the US National Institutes of Health to do a follow-up study of the Romanian children as they turn 12. It could be that the orphanage environment led to epigenetic programming — chemical, rather than sequence, changes to DNA — that has caused the children's telomeres to continue to shorten at a faster rate than normal, or their telomeres may even have lengthened again, say the authors.

The follow-up study might also help to answer the question of whether shorter telomeres are a cause or an effect of poor health. The researchers have cognitive and physical health records from the children from multiple ages and are analysing whether children from the two groups differ in terms of mental development and physical health. They will soon be able to compare these medical histories to their telomere lengths as 12-year olds.

"Stress is hard to define", says Drury. "These data might show us if telomere length can be used as a fundamental biomarker for all of the cumulative factors that we call adverse experiences."

Stress tends to do what to telomeres

  1. Lyons, A. & Chamberlain, K. The effects of minor events, optimism and self-esteem on health. Br. J. Clin. Psychol. 33, 559–570 (1994).

    CAS  PubMed  Article  Google Scholar 

  2. Rasmussen, H. N., Scheier, M. F. & Greenhouse, J. B. Optimism and physical health: A meta-analytic review. Ann. Behav. Med. 37, 239–256 (2009).

    PubMed  Article  Google Scholar 

  3. Schoormans, D., Verhoeven, J. E., Denollet, J., van de Poll-Franse, L. & Penninx, B. Leukocyte telomere length and personality: Associations with the Big Five and Type D personality traits. Psychol. Med. 48, 1008–1019 (2018).

    CAS  PubMed  Article  Google Scholar 

  4. Sadahiro, R. et al. Relationship between leukocyte telomere length and personality traits in healthy subjects. Eur. Psychiatry. 30, 291–295 (2015).

    CAS  PubMed  Article  Google Scholar 

  5. Ikeda, A. et al. Pessimistic orientation in relation to telomere length in older men: The VA normative aging study. Psychoneuroendocrinology. 42, 68–76 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Zalli, A. et al. Shorter telomeres with high telomerase activity are associated with raised allostatic load and impoverished psychosocial resources. Proc. Natl. Acad. Sci. USA. 111, 4519–4524 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. Blackburn, E. H. Switching and signaling at the telomere. Cell 106, 661–673 (2001).

    CAS  Article  PubMed  Google Scholar 

  8. Saretzki, G., Sitte, N., Merkel, U., Wurm, R. E. & von Zglinicki, T. Telomere shortening triggers a p53-dependent cell cycle arrest via accumulation of G-rich single stranded DNA fragments. Oncogene 18, 5148–5158 (1999).

    CAS  PubMed  Article  Google Scholar 

  9. Zhang, X., Mar, V., Zhou, W., Harrington, L. & Robinson, M. O. Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev. 13, 2388–2399 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. & Sedivy, J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol. Cell. 14, 501–513 (2004).

    CAS  PubMed  Article  Google Scholar 

  11. Salpea, K. D. & Humphries, S. E. Telomere length in atherosclerosis and diabetes. Atherosclerosis. 209, 35–38 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Wong, L. S. et al. Anaemia is associated with shorter leucocyte telomere length in patients with chronic heart failure. Eur. J. Heart Fail. 12, 348–353 (2010).

    CAS  PubMed  Article  Google Scholar 

  13. Giltay, E. J., Geleijnse, J. M., Zitman, F. G., Buijsse, B. & Kromhout, D. Lifestyle and dietary correlates of dispositional optimism in men: The Zutphen Elderly Study. J. Psychosom. Res. 63, 483–490 (2007).

    PubMed  Article  Google Scholar 

  14. Kelloniemi, H., Ek, E. & Laitinen, J. Optimism, dietary habits, body mass index and smoking among young Finnish adults. Appetite. 45, 169–176 (2005).

    PubMed  Article  Google Scholar 

  15. Chida, Y. & Steptoe, A. Cortisol awakening response and psychosocial factors: A systematic review and meta-analysis. Biol. Psychol. 80, 265–278 (2009).

    PubMed  Article  Google Scholar 

  16. Endrighi, R., Hamer, M. & Steptoe, A. Associations of trait optimism with diurnal neuroendocrine activity, cortisol responses to mental stress, and subjective stress measures in healthy men and women. Psychosom. Med. 73, 672–678 (2011).

    CAS  PubMed  Article  Google Scholar 

  17. Tomiyama, A. J. et al. Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. Physiol. Behav. 106, 40–45 (2012).

    CAS  PubMed  Article  Google Scholar 

  18. Lin, J., Epel, E. & Blackburn, E. Telomeres and lifestyle factors: roles in cellular aging. Mutat. Res. 730, 85–89 (2012).

    CAS  PubMed  Article  Google Scholar 

  19. Wolkowitz, O. M. et al. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress–preliminary findings. PLoS ONE 6, e17837 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Johansson, L. et al. Midlife personality and risk of Alzheimer disease and distress: A 38-year follow-up. Neurology. 83, 1538–1544 (2014).

    PubMed  Article  Google Scholar 

  21. Bower, J. H. et al. Anxious personality predicts an increased risk of Parkinson’s disease. Mov. Disord. 25, 2105–2113 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  22. Denollet, J. et al. Personality as independent predictor of long-term mortality in patients with coronary heart disease. Lancet 347, 417–421 (1996).

    CAS  PubMed  Article  Google Scholar 

  23. Rosmond, R. & Bjorntorp, P. The hypothalamic-pituitary-adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and stroke. J. Intern. Med. 247, 188–197 (2000).

    CAS  PubMed  Article  Google Scholar 

  24. de Pablos, R. M. et al. Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation. J. Neuroinflammation. 11, 34 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. Epel, E. S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci. USA 101, 17312–17315 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Monaghan, P. & Haussmann, M. F. Do telomere dynamics link lifestyle and lifespan?. Trends Ecol. Evol. 21, 47–53 (2006).

    PubMed  Article  Google Scholar 

  27. Simon, N. M. et al. Telomere shortening and mood disorders: Preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry. 60, 432–435 (2006).

    CAS  PubMed  Article  Google Scholar 

  28. Vakonaki, E. et al. Common mental disorders and association with telomere length. Biomed. Rep. 8, 111–116 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Martin-Ruiz, C. et al. Senescence and inflammatory markers for predicting clinical progression in parkinson’s disease: The ICICLE-PD study. J. Parkinsons. Dis. 10, 193–206 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Forero, D. A. et al. Meta-analysis of telomere length in Alzheimer’s disease. J. Gerontol. A. 71, 1–5 (2016).

    Article  Google Scholar 

  31. D’Mello, M. J. et al. Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic review and meta-analysis. Circ. Cardiovasc. Genet. 8, 82–90 (2015).

    CAS  PubMed  Article  Google Scholar 

  32. Xiong, F. & Zhang, L. Role of the hypothalamic-pituitary-adrenal axis in developmental programming of health and disease. Front. Neuroendocrinol. 34, 27–46 (2013).

    CAS  PubMed  Article  Google Scholar 

  33. Maniam, J., Antoniadis, C. & Morris, M. J. Early-life stress, HPA axis adaptation, and mechanisms contributing to later health outcomes. Front. Endocrinol. 5, 73 (2014).

    Article  Google Scholar 

  34. Patton, E. E., Dhillon, P., Amatruda, J. F. & Ramakrishnan, L. Spotlight on zebrafish: Translational impact. Dis. Model Mech. 7, 731–733 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  35. Alsop, D. & Vijayan, M. M. Molecular programming of the corticosteroid stress axis during zebrafish development. Comp. Biochem. Physiol. A 153, 49–54 (2009).

    Article  CAS  Google Scholar 

  36. Arslan-Ergul, A., Erbaba, B., Karoglu, E. T., Halim, D. O. & Adams, M. M. Short-term dietary restriction in old zebrafish changes cell senescence mechanisms. Neuroscience 334, 64–75 (2016).

    CAS  PubMed  Article  Google Scholar 

  37. Carneiro, M. C. et al. Short telomeres in key tissues initiate local and systemic aging in zebrafish. PLoS Genet. 12, e1005798 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. Kishi, S. et al. The zebrafish as a vertebrate model of functional aging and very gradual senescence. Exp. Gerontol. 38, 777–786 (2003).

    PubMed  Article  Google Scholar 

  39. Anchelin, M., Murcia, L., Alcaraz-Perez, F., Garcia-Navarro, E. M. & Cayuela, M. L. Behaviour of telomere and telomerase during aging and regeneration in zebrafish. PLoS ONE 6, e16955 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Carneiro, M. C., de Castro, I. P. & Ferreira, M. G. Telomeres in aging and disease: Lessons from zebrafish. Dis. Model Mech. 9, 737–748 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Toms, C. N. & Echevarria, D. J. Back to basics: searching for a comprehensive framework for exploring individual differences in zebrafish (Danio rerio) behavior. Zebrafish. 11, 325–340 (2014).

    PubMed  Article  Google Scholar 

  42. Truett, G. E. et al. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29, 52–54 (2000).

    CAS  PubMed  Article  Google Scholar 

  43. Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. & Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8, R19 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. Ribas, L. et al. Heat-induced masculinization in domesticated zebrafish is family-specific and yields a set of different gonadal transcriptomes. Proc. Natl. Acad. Sci. USA 114, E941–E950 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. Cawthon, R. M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 30, e47 (2002).

    PubMed  PubMed Central  Article  Google Scholar 

  46. Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1 (2015).

    Article  Google Scholar 

  47. Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article  Google Scholar 

  48. Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).

    PubMed  Article  Google Scholar 

  49. de Kloet, E. R. From receptor balance to rational glucocorticoid therapy. Endocrinology 155, 2754–2769 (2014).

    PubMed  Article  CAS  Google Scholar 

  50. Arslan-Ergul, A. & Adams, M. M. Gene expression changes in aging zebrafish (Danio rerio) brains are sexually dimorphic. BMC Neurosci. 15, 29 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. Zhang, H. & Cohen, S. N. Smurf2 up-regulation activates telomere-dependent senescence. Genes Dev. 18, 3028–3040 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Beekman, A. T. et al. Anxiety disorders in later life: A report from the Longitudinal Aging Study Amsterdam. Int. J. Geriat. Psychiatry. 13, 717–726 (1998).

    CAS  Article  Google Scholar 

  53. Wittchen, H.-U. & Hoyer, J. Generalized anxiety disorder: Nature and course. J. Clin. Psychiatry 62, 15–21 (2001).

    PubMed  Google Scholar 

  54. Bessa, J., Oliveira, M., Cerqueira, J., Almeida, O. & Sousa, N. Age-related qualitative shift in emotional behaviour: Paradoxical findings after re-exposure of rats in the elevated-plus maze. Behav. Brain Res. 162, 135–142 (2005).

    CAS  PubMed  Article  Google Scholar 

  55. Boguszewski, P. & Zagrodzka, J. Emotional changes related to age in rats: A behavioral analysis. Behav. Brain Res. 133, 323–332 (2002).

    PubMed  Article  Google Scholar 

  56. File, S. Age and anxiety: Increased anxiety, decreased anxiolytic, but enhanced sedative, response to chlordiazepoxide in old rats. Hum. Psychopharmacol. Clin. Exp. 5, 169–173 (1990).

    CAS  Article  Google Scholar 

  57. Kacprzak, V. et al. Dopaminergic control of anxiety in young and aged zebrafish. Pharmacol. Biochem. Behav. 157, 1–8 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Rambo, C. L. et al. Gender differences in aggression and cortisol levels in zebrafish subjected to unpredictable chronic stress. Physiol. Behav. 171, 50–54 (2017).

    CAS  PubMed  Article  Google Scholar 

  59. Swerdlow, N., Geyer, M. A., Vale, W. & Koob, G. Corticotropin-releasing factor potentiates acoustic startle in rats: blockade by chlordiazepoxide. Psychopharmacology. 88, 147–152 (1986).

    CAS  PubMed  Article  Google Scholar 

  60. Axson, E. L. et al. Sex differences in telomere length are not mediated by sex steroid hormones or body size in early adolescence. Gender Genome. 2, 68–75 (2018).

    Article  Google Scholar 

  61. North, B. J. & Sinclair, D. A. The intersection between aging and cardiovascular disease. Circ. Res. 110, 1097–1108 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Suls, J. & Bunde, J. Anger, anxiety, and depression as risk factors for cardiovascular disease: The problems and implications of overlapping affective dispositions. Psychol. Bull. 131, 260 (2005).

    PubMed  Article  Google Scholar 

  63. Epel, E. S. et al. Cell aging in relation to stress arousal and cardiovascular disease risk factors. Psychoneuroendocrinology. 31, 277–287 (2006).

    CAS  PubMed  Article  Google Scholar 

  64. Mayer, S. E. et al. Cumulative lifetime stress exposure and leukocyte telomere length attrition: The unique role of stressor duration and exposure timing. Psychoneuroendocrinology. 104, 210–218 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Choi, J., Fauce, S. R. & Effros, R. B. Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav. Immun. 22, 600–605 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Gotlib, I. et al. Telomere length and cortisol reactivity in children of depressed mothers. Mol. Psychiatry. 20, 615–620 (2015).

    CAS  PubMed  Article  Google Scholar 

  67. Wei, Y. B., Backlund, L., Wegener, G., Mathé, A. A. & Lavebratt, C. Telomerase dysregulation in the hippocampus of a rat model of depression: Normalization by lithium. Int. J. Neuropsychopharmacol. 18, 002 (2015).

    Google Scholar 

  68. Athanasoulia-Kaspar, A. P., Auer, M. K., Stalla, G. K. & Jakovcevski, M. Shorter telomeres associated with high doses of glucocorticoids: the link to increased mortality?. Endocr. Connect. 7, 1217–1226 (2018).

    CAS  PubMed Central  Article  Google Scholar 

  69. Oakley, R. H. et al. Cardiomyocyte glucocorticoid and mineralocorticoid receptors directly and antagonistically regulate heart disease in mice. Sci. Signal. 12, 9685 (2019).

    Article  Google Scholar 

  70. Bär, C. et al. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nat. Commun. 5, 1–14 (2014).

    Article  CAS  Google Scholar 

  71. Gemberling, M., Bailey, T. J., Hyde, D. R. & Poss, K. D. The zebrafish as a model for complex tissue regeneration. Trends Genet. 29, 611–620 (2013).

    CAS  PubMed  Article  Google Scholar 

  72. Bednarek, D. et al. Telomerase is essential for zebrafish heart regeneration. Cell Rep. 12, 1691–1703 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Fouquerel, E. et al. Targeted and persistent 8-oxoguanine base damage at telomeres promotes telomere loss and crisis. Mol. Cell. 75, 117–130 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Karssen, A. et al. Stress-induced changes in primate prefrontal profiles of gene expression. Mol. Psychiatry. 12, 1089–1102 (2007).

    CAS  PubMed  Article  Google Scholar 

  75. Petrillo, M. G., Oakley, R. H. & Cidlowski, J. A. β-Arrestin-1 inhibits glucocorticoid receptor turnover and alters glucocorticoid signaling. J. Biol. Chem. 294, 11225–11239 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Monroy-Jaramillo, N., Dyukova, E. & Walss-Bass, C. Telomere length in psychiatric disorders: Is it more than an ageing marker?. World J. Biol. Psychiatry. 19, S2–S20 (2018).

    PubMed  Article  Google Scholar 

  77. Wolkowitz, O. M., Epel, E. S., Reus, V. I. & Mellon, S. H. Depression gets old fast: Do stress and depression accelerate cell aging?. Depression Anxiety. 27, 327–338 (2010).

    CAS  PubMed  Article  Google Scholar 

  78. Mamdani, F. et al. Variable telomere length across post-mortem human brain regions and specific reduction in the hippocampus of major depressive disorder. Transl. Psychiatry. 5, e636–e636 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Lin, J. et al. Systematic and cell type-specific telomere length changes in subsets of lymphocytes. J. Immunol. Res. 2016, 1–9 (2016).

    Article  CAS  Google Scholar 

  80. Nakamura, K.-I. et al. Telomeric DNA length in cerebral gray and white matter is associated with longevity in individuals aged 70 years or older. Exp. Gerontol. 42, 944–950 (2007).

    CAS  PubMed  Article  Google Scholar 

  81. Lund, T. C., Glass, T. J., Tolar, J. & Blazar, B. R. Expression of telomerase and telomere length are unaffected by either age or limb regeneration in Danio rerio. PLoS ONE 4, e7688 (2009).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 


Page 2

Zebrafish selected for molecular analysis based on behaviourally determined stress reactivity. (a) Diagram of the novel tank assay: each fish is individually transferred from its home tank to a novel test tank. The time (seconds) spent in the bottom in each minute was used for analysis. (b) Entire population results for bottom dwelling by minute over the course of the novel tank test. (c) Population distribution of young (6–9 month) and aging (18 month) males and females based on their bottom dwelling in minute two (N = 256). (d) Bottom dwelling differences in minute two for the fish selected for molecular analysis (N = 64). Note that (d) corresponds to either extreme of the population distribution in (c). Error bars in (b) represent ± standard error mean (SEM). For (c) and (d) middle lines indicate median values and error bars represent interquartile range. YFL young female low stress reactivity, YFH young female high stress reactivity, YML young male low stress reactivity, YMH young male high stress reactivity, AFL aging female low stress reactivity, AFH aging female high stress reactivity, AML aging male low stress reactivity, AMH aging male high stress reactivity. ***p-value < 0.001.