What blood component is acted upon by aspirin

  1. Karussis D. The diagnosis of multiple sclerosis and the various related demyelinating syndromes: a critical review. J Autoimmun. 2014;48–49:134–42.

    PubMed  Google Scholar 

  2. Kutzelnigg A, Lassmann H. Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handb Clin Neurol. 2014;122:15–58.

    PubMed  Google Scholar 

  3. Neumann H. Molecular mechanisms of axonal damage in inflammatory central nervous system diseases. Curr Opin Neurol. 2003;16:267–73.

    CAS  PubMed  Google Scholar 

  4. Lassmann H. Axonal and neuronal pathology in multiple sclerosis: what have we learnt from animal models. Exp Neurol. 2010;225:2–8.

    PubMed  Google Scholar 

  5. Correale J. The role of microglial activation in disease progression. Mult Scler. 2014;20:1288–95.

    CAS  PubMed  Google Scholar 

  6. Witte ME, Mahad DJ, Lassmann H, van Horssen J. Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis. Trends Mol Med. 2014;20:179–87.

    PubMed  Google Scholar 

  7. de Vries HE, Kooij G, Frenkel D, Georgopoulos S, Monsonego A, Janigro D. Inflammatory events at blood-brain barrier in neuroinflammatory and neurodegenerative disorders: implications for clinical disease. Epilepsia. 2012;53(s6):45–52.

    PubMed  PubMed Central  Google Scholar 

  8. Cramer SP, Simonsen H, Frederiksen JL, Rostrup E, Larsson HB. Abnormal blood-brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI. Neuroimage Clin. 2013;4:182–9.

    PubMed  PubMed Central  Google Scholar 

  9. Lycke J, Wikkelsö C, Bergh AC, Jacobsson L, Andersen O. Regional cerebral blood flow in multiple sclerosis measured by single photon emission tomography with technetium-99m hexamethylpropyleneamine oxime. Eur Neurol. 1993;33:163–7.

    CAS  PubMed  Google Scholar 

  10. Rashid W, Parkes LM, Ingle GT, Chard DT, Toosy AT, Altmann DR, et al. Abnormalities of cerebral perfusion in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2004;75:1288–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Inglese M, Park SJ, Johnson G, Babb JS, Miles L, Jaggi H, et al. Deep gray matter perfusion in multiple sclerosis: dynamic susceptibility contrast perfusion magnetic resonance imaging at 3 T. Arch Neurol. 2007;64:196–202.

    PubMed  Google Scholar 

  12. Debernard L, Melzer TR, Van Stockum S, Graham C, Wheeler-Kingshott CA, Dalrymple-Alford JC, et al. Reduced grey matter perfusion without volume loss in early relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry. 2014;85:544–51.

    PubMed  Google Scholar 

  13. Wuerfel J, Paul F, Zipp F. Cerebral blood perfusion changes in multiple sclerosis. J Neurol Sci. 2007;259:16–20.

    PubMed  Google Scholar 

  14. Wakefield AJ, More LJ, Difford J, McLaughlin JE. Immunohistochemical study of vascular injury in acute multiple sclerosis. J Clin Pathol. 1994;47:129–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Adams CW. A color atlas of multiple sclerosis and other myelin disorders. Dobbs Ferry, NY: Sheridan House Inc.; 1989.

    Google Scholar 

  16. Mohan H, Krumbholz M, Sharma R, Eisele S, Junker A, Sixt M, et al. Extracellular matrix in multiple sclerosis lesions: fibrillar collagens, biglycan and decorin are upregulated and associated with infiltrating immune cells. Brain Pathol. 2010;20:966–75.

    CAS  PubMed  Google Scholar 

  17. Christiansen CF, Christensen S, Farkas DK, Miret M, Sorensen HT, Pedersen L. Risk of arterial cardiovascular diseases in patients with multiple sclerosis: a population-based cohort study. Neuroepidemiology. 2010;35:267–74.

    PubMed  Google Scholar 

  18. Jadidi E, Mohammadi M, Moradi T. High risk of cardiovascular diseases after diagnosis of multiple sclerosis. Mult Scler. 2013;19:1336–40.

    PubMed  Google Scholar 

  19. Ramagopalan SV, Wotton CJ, Handel AE, Yeates D, Goldacre MJ. Risk of venous thromboembolism in people admitted to hospital with selected immune-mediated diseases: record-linkage study. BMC Med. 2011;9:1.

    PubMed  PubMed Central  Google Scholar 

  20. Christiansen CF. Risk of vascular disease in patients with multiple sclerosis: a review. Neurol Res. 2012;34:746–53.

    PubMed  Google Scholar 

  21. Christensen S, Farkas DK, Pedersen L, Miret M, Christiansen CF, Sorensen HT. Multiple sclerosis and risk of venous thromboembolism: a population-based cohort study. Neuroepidemiology. 2012;38:76–83.

    PubMed  Google Scholar 

  22. Zöller B, Li X, Sundquist J, Sundquist K. Risk of pulmonary embolism in patients with autoimmune disorders: a nationwide follow-up study from Sweden. Lancet. 2012;379:244–9.

    PubMed  Google Scholar 

  23. Peeters PJ, Bazelier MT, Uitdehaag BM, Leufkens HG, De Bruin ML, de Vries F. The risk of venous thromboembolism in patients with multiple sclerosis: the Clinical Practice Research Datalink. J Thromb Haemost. 2014;12:444–51.

    CAS  PubMed  Google Scholar 

  24. Lewis Jr HD, Davis JW, Archibald DG, Steinke WE, Smitherman TC, Doherty 3rd JE, et al. Protective effects of aspirin against acute myocardial infarction and death in men with unstable angina. Results of a Veterans Administration Cooperative Study. N Engl J Med. 1983;309:396–403.

    PubMed  Google Scholar 

  25. Guthrie R. Review and management of side effects associated with antiplatelet therapy for prevention of recurrent cerebrovascular events. Adv Ther. 2011;28:473–82.

    CAS  PubMed  Google Scholar 

  26. Kirshner HS. Prevention of secondary stroke and transient ischaemic attack with antiplatelet therapy: the role of the primary care physician [corrected]. Int J Clin Pract. 2007;61:1739–48.

    CAS  PubMed  Google Scholar 

  27. Becattini C, Agnelli G. Aspirin for prevention and treatment of venous thromboembolism. Blood Rev. 2014;28:103–8.

    CAS  PubMed  Google Scholar 

  28. Simes J, Becattini C, Agnelli G. Aspirin for the prevention of recurrent venous thromboembolism: the INSPIRE collaboration. J Vasc Surg. 2014;60:1711.

    Google Scholar 

  29. Undas A, Brummel-Ziedins K, Mann KG. Why does aspirin decrease the risk of venous thromboembolism? On old and novel antithrombotic effects of acetyl salicylic acid. J Thromb Haemost. 2014;12:1776–87.

    CAS  PubMed  Google Scholar 

  30. Cattaneo M. Haemorrhagic stroke during anti-platelet therapy. Eur J Anaesthesiol Suppl. 2008;42:12–5.

    CAS  PubMed  Google Scholar 

  31. Antithrombotic Trialists’ (ATT) Collaboration, Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373:1849–60.

    Google Scholar 

  32. Sutcliffe P, Connock M, Gurung T, Freeman K, Johnson S, Ngianga-Bakwin K, et al. Aspirin in primary prevention of cardiovascular disease and cancer: a systematic review of the balance of evidence from reviews of randomized trials. PLoS One. 2013;8:e81970.

    PubMed  PubMed Central  Google Scholar 

  33. Sandoval-Acuña C, Lopez-Alarcón C, Aliaga ME, Speisky H. Inhibition of mitochondrial complex I by various non-steroidal anti-inflammatory drugs and its protection by quercetin via a coenzyme Q-like action. Chem Biol Interact. 2012;199:18–28.

    PubMed  Google Scholar 

  34. Lu F, Selak M, O’Connor J, Croul S, Lorenzana C, Butunoi C, et al. Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci. 2000;177:95–103.

    CAS  PubMed  Google Scholar 

  35. Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol. 2006;59:478–89.

    CAS  PubMed  Google Scholar 

  36. Allen NB, Lichtman JH, Cohen HW, Fang J, Brass LM, Alderman MH. Vascular disease among hospitalized multiple sclerosis patients. Neuroepidemiology. 2008;30:234–8.

    PubMed  Google Scholar 

  37. Zöller B, Li X, Sundquist J, Sundquist K. Risk of subsequent ischemic and hemorrhagic stroke in patients hospitalized for immune-mediated diseases: a nationwide follow-up study from Sweden. BMC Neurol. 2012;12:41.

    PubMed  PubMed Central  Google Scholar 

  38. Roshanisefat H, Bahmanyar S, Hillert J, Olsson T, Montgomery S. Multiple sclerosis clinical course and cardiovascular disease risk - Swedish cohort study. Eur J Neurol. 2014;21:1353–e88.

    CAS  PubMed  Google Scholar 

  39. Ocak G, Vossen CY, Verduijn M, Dekker FW, Rosendaal FR, Cannegieter SC, et al. Risk of venous thrombosis in patients with major illnesses: results from the MEGA study. J Thromb Haemost. 2013;11:116–23.

    CAS  PubMed  Google Scholar 

  40. Healy B, Levin E, Perrin K, Weatherall M, Beasley R. Prolonged work- and computer-related seated immobility and risk of venous thromboembolism. J R Soc Med. 2010;103:447–54.

    PubMed  PubMed Central  Google Scholar 

  41. Shah SM, Shah SM, Khan S, Rehman SU, Khan ZA, Ahmed W, et al. “Addressing the impact of stroke risk factors in a case control study in tertiary care hospitals”: a case control study in Tertiary Care Hospitals of Peshawar, Khyber Phukhtoonkhwa (KPK) Pakistan. BMC Res Notes. 2013;6:268.

    PubMed  PubMed Central  Google Scholar 

  42. Stuifbergen AK. Physical activity and perceived health status in persons with multiple sclerosis. J Neurosci Nurs. 1997;29:238–43.

    CAS  PubMed  Google Scholar 

  43. Koch-Henriksen N, Brønnum-Hansen H, Stenager E. Underlying cause of death in Danish patients with multiple sclerosis: results from the Danish Multiple Sclerosis Registry. J Neurol Neurosurg Psychiatry. 1998;65:56–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Arpaia G, Bavera PM, Caputo D, Mendozzi L, Cavarretta R, Agus GB, et al. Risk of deep venous thrombosis (DVT) in bedridden or wheelchair-bound multiple sclerosis patients: a prospective study. Thromb Res. 2010;125:315–7.

    CAS  PubMed  Google Scholar 

  45. Kappus N, Weinstock-Guttman B, Hagemeier J, Kennedy C, Melia R, Carl E, et al. Cardiovascular risk factors are associated with increased lesion burden and brain atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015. doi: 10.1136/jnnp-2014-310051. [Epub ahead of print].

  46. Sternberg Z, Leung C, Sternberg D, Yu J, Hojnacki D. Disease modifying therapies modulate cardiovascular risk factors in patients with multiple sclerosis. Cardiovasc Ther. 2014;32:33–9.

    CAS  PubMed  Google Scholar 

  47. Canadian Agency for Drugs and Technologies in Health. CADTH Common Drug Review. CDR Clinical Review Report for Aubagio [Internet]. Ottawa: The Agency; 2014. Oct [cited 2015 May 15]. https://www.cadth.ca/media/cdr/clinical/SR0350_Aubagio_CL_Report_e.pdf.

  48. Gold R, Comi G, Palace J, Siever A, Gottschalk R, Bijarnia M, et al. Assessment of cardiac safety during fingolimod treatment initiation in a real-world relapsing multiple sclerosis population: a phase 3b, open-label study. J Neurol. 2014;261:267–76.

    CAS  PubMed  Google Scholar 

  49. Paolicelli D, Manni A, Direnzo V, D’Onghia M, Tortorella C, Zoccolella S, Trojano M. Long term cardiac safety and tolerability of fingolimod in multiple sclerosis: a post-marketing study. J Clin Pharmacol 2015. doi:10.1002/jcph.519. [Epub ahead of print].

  50. Brønnum-Hansen H, Koch-Henriksen N, Stenager E. Trends in survival and cause of death in Danish patients with multiple sclerosis. Brain. 2004;127:844–50.

    PubMed  Google Scholar 

  51. Hirst C, Swingler R, Compston DA, Ben-Shlomo Y, Robertson NP. Survival and cause of death in multiple sclerosis: a prospective population-based study. J Neurol Neurosurg Psychiatry. 2008;79:1016–21.

    CAS  PubMed  Google Scholar 

  52. Grundy SM, Hansen B, Smith Jr SC, Cleeman JI, Kahn RA, American Heart Association; National Heart, Lung, and Blood Institute; American Diabetes Association. Clinical management of metabolic syndrome: report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. Arterioscler Thromb Vasc Biol. 2004;24:e19–24.

    CAS  PubMed  Google Scholar 

  53. Wens I, Dalgas U, Deckx N, Cools N, Eijnde B. Does multiple sclerosis affect glucose tolerance? Mult Scler. 2013;20:1273–6.

    PubMed  Google Scholar 

  54. Mähler A, Steiniger J, Bock M, Brandt AU, Haas V, Boschmann M, et al. Is metabolic flexibility altered in multiple sclerosis patients? PLoS One. 2012;7:e43675.

    PubMed  PubMed Central  Google Scholar 

  55. Wens I, Dalgas U, Stenager E, Eijnde BO. Risk factors related to cardiovascular diseases and the metabolic syndrome in multiple sclerosis - a systematic review. Mult Scler. 2013;19:1556–64.

    PubMed  Google Scholar 

  56. Mathur D, López-Rodas G, Casanova B, Marti MB. Perturbed glucose metabolism: insights into multiple sclerosis pathogenesis. Front Neurol. 2014;5:250.

    PubMed  PubMed Central  Google Scholar 

  57. Patrono C, García Rodríguez LA, Landolfi R, Baigent C. Low-dose aspirin for the prevention of atherothrombosis. N Engl J Med. 2005;353:2373–83.

    CAS  PubMed  Google Scholar 

  58. Patrono C, Baigent C. Low-dose aspirin, coxibs, and other NSAIDS: a clinical mosaic emerges. Mol Interv. 2009;9:31–9.

    CAS  PubMed  Google Scholar 

  59. Grosser T, Smyth E, FitzGerald G. Anti-inflammatory, antipyretic, and analgesic agents; pharmacotherapy of gout. In: Brunton L, Chabner B, Knollmann B, editors. Goodman and Gilman’s pharmacological basis of therapeutics, 12E. New York, NY: The McGraw-Hill Companies; 2011.

    Google Scholar 

  60. Roth GJ, Stanford N, Majerus PW. Acetylation of prostaglandin synthase by aspirin. Proc Natl Acad Sci U S A. 1975;72:3073–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Stanford N, Roth GJ, Shen TY, Majerus PW. Lack of covalent modification of prostaglandin synthetase (cyclo-oxygenase) by indomethacin. Prostaglandins. 1977;13:669–75.

    CAS  PubMed  Google Scholar 

  62. Smith W, Garavito R, DeWitt D. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem. 1996;271:33157–60.

    CAS  PubMed  Google Scholar 

  63. McAdam B, Mardini I, Habib A, Burke A, Lawson J, Kapoor S, et al. Effect of regulated expression of human cyclooxygenase isoforms on eicosanoid and isoeicosanoid production in inflammation. J Clin Invest. 2000;105:1473–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Warner TD, Nylander S, Whatling C. Anti-platelet therapy: cyclo-oxygenase inhibition and the use of aspirin with particular regard to dual anti-platelet therapy. Br J Clin Pharmacol. 2011;72:619–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Langer HF, Chavakis T. Platelets and neurovascular inflammation. Thromb Haemost. 2013;110:888–93.

    CAS  PubMed  Google Scholar 

  66. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, et al. Cyclooxygenase in biology and disease. FASEB J. 1998;12:1063–73.

    CAS  PubMed  Google Scholar 

  67. Vane J, Bakhle Y, Botting R. Cyclooxygenases 1 and 2. Ann Rev Pharmacol Toxicol. 1998;38:97–120.

    CAS  Google Scholar 

  68. Angiolillo D, Ueno M, Goto S. Basic principles of platelet biology and clinical implications. Circ J. 2010;74:597–607.

    CAS  PubMed  Google Scholar 

  69. Gleim S, Stitham J, Tang WH, Martin KA, Hwa J. An eicosanoid-centric view of atherothrombotic risk factors. Cell Mol Life Sci. 2012;69:3361–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Stokes KY, Granger DN. Platelets: a critical link between inflammation and microvascular dysfunction. J Physiol. 2012;590:1023–34.

    CAS  PubMed  Google Scholar 

  71. Horstman LL, Jy W, Ahn YS, Zivadinov R, Maghzi AH, Etemadifar M, et al. Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation. 2010;7:10.

    PubMed  PubMed Central  Google Scholar 

  72. Sheremata W, Jy W, Horstman LL, Ahn YS, Alexander JS, Minagar A. Evidence of platelet activation in multiple sclerosis. J Neuroinflammation. 2008;5:27.

    PubMed  PubMed Central  Google Scholar 

  73. Langer HF, Choi EY, Zhou H, Schleicher R, Chung KJ, Tang Z, et al. Platelets contribute to the pathogenesis of experimental autoimmune encephalomyelitis. Circ Res. 2012;110:1202–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Guyatt G, Akl E, Crowther M, Gutterman D, Schünemann H. Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141:7S–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ajani UA, Ford ES, Greenland KJ, Giles WH, Mokdad AH. Aspirin use among U.S. adults: Behavioral Risk Factor Surveillance System. Am J Prev Med. 2006;30:74–7.

    PubMed  Google Scholar 

  76. Pignone M, Anderson GK, Binns K, Tilson HH, Weisman SM. Aspirin use among adults aged 40 and older in the United States: results of a national survey. Am J Prev Med. 2007;32:403–7.

    PubMed  Google Scholar 

  77. VanWormer JJ, Greenlee RT, McBride PE, Peppard PE, Malecki KC, Che J, et al. Aspirin for primary prevention of CVD: are the right people using it? J Fam Pract. 2012;61:525–32.

    PubMed  Google Scholar 

  78. Zhou Y, Boudreau DM, Freedman AN. Trends in the use of aspirin and nonsteroidal anti-inflammatory drugs in the general U.S. population. Pharmacoepidemiol Drug Saf. 2014;23:43–50.

    CAS  PubMed  Google Scholar 

  79. Sandercock PA, Counsell C, Tseng MC, Cecconi E. Oral antiplatelet therapy for acute ischaemic stroke. Cochrane Database Syst Rev. 2014;3:CD000029.

    PubMed  Google Scholar 

  80. Vande Griend JP, Saseen JJ. Combination antiplatelet agents for secondary prevention of ischemic stroke. Pharmacotherapy. 2008;28:1233–42.

    CAS  PubMed  Google Scholar 

  81. Simmons BB, Gadegbeku AB, Cirignano B. Transient ischemic attack: Part II. Risk factor modification and treatment. Am Fam Physician. 2012;86:527–32.

    PubMed  Google Scholar 

  82. Jamieson DG, Parekh A, Ezekowitz MD. Review of antiplatelet therapy in secondary prevention of cerebrovascular events: a need for direct comparisons between antiplatelet agents. J Cardiovasc Pharmacol Ther. 2005;10:153–61.

    CAS  PubMed  Google Scholar 

  83. Chaturvedi S. Acetylsalicylic acid + extended-release dipyridamole combination therapy for secondary stroke prevention. Clin Ther. 2008;30:1196–205.

    CAS  PubMed  Google Scholar 

  84. Hennekens CH. Aspirin in the treatment and prevention of cardiovascular disease: current perspectives and future directions. Curr Atheroscler Rep. 2007;9:409–16.

    CAS  PubMed  Google Scholar 

  85. Tsai AW, Cushman M, Rosamond WD, Heckbert SR, Polak JF, Folsom AR. Cardiovascular risk factors and venous thromboembolism incidence: the Longitudinal Investigation of Thromboembolism Etiology. Arch Intern Med. 2002;162:1182–9.

    PubMed  Google Scholar 

  86. PEP Trial Collaborative Group. Prevention of pulmonary embolism and deep vein thrombosis with low dose aspirin: Pulmonary Embolism Prevention (PEP) trial. Lancet. 2000;355:1295–302.

    Google Scholar 

  87. Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324:71–86.

    Google Scholar 

  88. Stewart DW, Freshour JE. Aspirin for the prophylaxis of venous thromboembolic events in orthopedic surgery patients: a comparison of the AAOS and ACCP guidelines with review of the evidence. Ann Pharmacother. 2013;47:63–74.

    PubMed  Google Scholar 

  89. Putnam TJ, Adler A. Vascular architecture of the lesions of multiple sclerosis. Arch Neurol Psychiatr. 1937;58:1–15.

    Google Scholar 

  90. Dow RS, Berglund G. Vascular pattern of lesions of multiple sclerosis. Arch Neurol Psych. 1942;47:1–18.

    Google Scholar 

  91. Scheinker H. Histogenesis of the early lesions of multiple sclerosis. I. Significance of vascular changes. Arch Neurol Psych. 1943;49:178–85.

    Google Scholar 

  92. Law M, Saindane AM, Ge Y, Babb JS, Johnson G, Mannon LJ, et al. Microvascular abnormality in relapsing-remitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter. Radiology. 2004;231:645–52.

    PubMed  Google Scholar 

  93. Alvarez-Guerra M, Hannaert P, Hider H, Chiavaroli C, Garay RP. Vascular permeabilization by intravenous arachidonate in the rat peritoneal cavity: antagonism by antioxidants. Eur J Pharmacol. 2003;466:199–205.

    CAS  PubMed  Google Scholar 

  94. Serhan CN, Takano T, Chiang N, Gronert K, Clish CB. Formation of endogenous “antiinflammatory” lipid mediators by transcellular biosynthesis. Lipoxins and aspirin-triggered lipoxins inhibit neutrophil recruitment and vascular permeability. Am J Respir Crit Care Med. 2000;161:S95–101.

    CAS  PubMed  Google Scholar 

  95. Dankbaar JW, Hom J, Schneider T, Cheng SC, Lau BC, van der Schaaf I, et al. Age- and anatomy-related values of blood-brain barrier permeability measured by perfusion-CT in non-stroke patients. J Neuroradiol. 2009;36:219–27.

    CAS  PubMed  Google Scholar 

  96. Chapman J. The interface of multiple sclerosis and antiphospholipid antibodies. Thromb Res. 2004;114:477–81.

    CAS  PubMed  Google Scholar 

  97. Bidot CJ, Horstman LL, Jy W, Jimenez JJ, Bidot Jr C, Ahn YS, et al. Clinical and neuroimaging correlates of antiphospholipid antibodies in multiple sclerosis: a preliminary study. BMC Neurol. 2007;7:36.

    PubMed  PubMed Central  Google Scholar 

  98. Garg N, Zivadinov R, Ramanathan M, Vasiliu I, Locke J, Watts K, et al. Clinical and MRI correlates of autoreactive antibodies in multiple sclerosis patients. J Neuroimmunol. 2007;187:159–65.

    CAS  PubMed  Google Scholar 

  99. Mayer M, Cerovec M, Rados M, Cikes N. Antiphospholipid syndrome and central nervous system. Clin Neurol Neurosurg. 2010;112:602–8.

    PubMed  Google Scholar 

  100. Horstman LL, Jy W, Bidot CJ, Ahn YS, Kelley RE, Zivadinov R, et al. Antiphospholipid antibodies: paradigm in transition. J Neuroinflammation. 2009;6:3.

    PubMed  PubMed Central  Google Scholar 

  101. Stosic M, Ambrus J, Garg N, Weinstock-Guttman B, Ramanathan M, Kalman B, et al. MRI characteristics of patients with antiphospholipid syndrome and multiple sclerosis. J Neurol. 2010;257:63–71.

    PubMed  Google Scholar 

  102. Zivadinov R, Ramanathan M, Ambrus J, Hussein S, Ramasamy DP, Dwyer MG, et al. Anti-phospholipid antibodies are associated with response to interferon-beta1a treatment in MS: results from a 3-year longitudinal study. Neurol Res. 2012;34:761–9.

    CAS  PubMed  Google Scholar 

  103. Garg N, Weinstock-Guttman B, Bhasi K, Locke J, Ramanathan M. An association between autoreactive antibodies and anti-interferon-beta antibodies in multiple sclerosis. Mult Scler. 2007;13:895–9.

    CAS  PubMed  Google Scholar 

  104. Szmyrka-Kaczmarek M, Pokryszko-Dragan A, Pawlik B, Gruszka E, Korman L, Podemski R, et al. Antinuclear and antiphospholipid antibodies in patients with multiple sclerosis. Lupus. 2012;21:412–20.

    CAS  PubMed  Google Scholar 

  105. Puente D, Pombo G, Forastiero R. Current management of antiphospholipid syndrome-related thrombosis. Expert Rev Cardiovasc Ther. 2009;7:1551–8.

    PubMed  Google Scholar 

  106. Erkan D, Harrison MJ, Levy R, Peterson M, Petri M, Sammaritano L, et al. Aspirin for primary thrombosis prevention in the antiphospholipid syndrome: a randomized, double-blind, placebo-controlled trial in asymptomatic antiphospholipid antibody-positive individuals. Arthritis Rheum. 2007;56:2382–91.

    CAS  PubMed  Google Scholar 

  107. Arnaud L, Mathian A, Devilliers H, Ruffatti A, Tektonidou M, Forastiero R, et al. Patient-level analysis of five international cohorts further confirms the efficacy of aspirin for the primary prevention of thrombosis in patients with antiphospholipid antibodies. Autoimmun Rev. 2015;14:192–200.

    CAS  PubMed  Google Scholar 

  108. Ganesh A, Stahnisch FW. On the historical succession of vessel-based therapies in the treatment of multiple sclerosis. Eur Neurol. 2013;70:48–58.

    CAS  PubMed  Google Scholar 

  109. Claudio L, Raine CS, Brosnan CF. Evidence of persistent blood-brain barrier abnormalities in chronic-progressive multiple sclerosis. Acta Neuropathol. 1995;90:228–38.

    CAS  PubMed  Google Scholar 

  110. Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature. 2008;451:1076–81.

    CAS  PubMed  Google Scholar 

  111. Cananzi AR, Ferro-Milone F, Grigoletto F, Toldo M, Meneghini F, Bortolon F, et al. Relevance of platelet factor four (PF4) plasma levels in multiple sclerosis. Acta Neurol Scand. 1987;76:79–85.

    CAS  PubMed  Google Scholar 

  112. Furuno T, Yamasaki F, Yokoyama T, Sato K, Sato T, Doi Y, et al. Effects of various doses of aspirin on platelet activity and endothelial function. Heart Vessels. 2011;26:267–73.

    PubMed  Google Scholar 

  113. Davalos D, Ryu JK, Merlini M, Baeten KM, Le Moan N, Petersen MA, et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun. 2012;3:1227.

    PubMed  PubMed Central  Google Scholar 

  114. Akassoglou K, Adams RA, Bauer J, Mercado P, Tseveleki V, Lassmann H, et al. Fibrin depletion decreases inflammation and delays the onset of demyelination in a tumor necrosis factor transgenic mouse model for multiple sclerosis. Proc Natl Acad Sci U S A. 2004;101:6698–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Yang Y, Tian SJ, Wu L, Huang DH, Wu WP. Fibrinogen depleting agent batroxobin has a beneficial effect on experimental autoimmune encephalomyelitis. Cell Mol Neurobiol. 2011;31:437–48.

    PubMed  Google Scholar 

  116. Undas A, Brummel-Ziedins KE, Mann KG. Antithrombotic properties of aspirin and resistance to aspirin: beyond strictly antiplatelet actions. Blood. 2007;109:2285–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Chapman J. Coagulation in inflammatory diseases of the central nervous system. Semin Thromb Hemost. 2013;39:876–80.

    CAS  PubMed  Google Scholar 

  118. Davalos D, Baeten KM, Whitney MA, Mullins ES, Friedman B, Olson ES, et al. Early detection of thrombin activity in neuroinflammatory disease. Ann Neurol. 2014;75:303–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Undas A, Brummel K, Musial J, Mann KG, Szczeklik A. Blood coagulation at the site of microvascular injury: effects of low-dose aspirin. Blood. 2001;98:2423–31.

    CAS  PubMed  Google Scholar 

  120. Tanne D, Katzav A, Beilin O, Grigoriadis NC, Blank M, Pick CG, et al. Interaction of inflammation, thrombosis, aspirin and enoxaparin in CNS experimental antiphospholipid syndrome. Neurobiol Dis. 2008;30:56–64.

    CAS  PubMed  Google Scholar 

  121. Sinnecker T, Bozin I, Dörr J, Pfueller CF, Harms L, Niendorf T, et al. Periventricular venous density in multiple sclerosis is inversely associated with T2 lesion count: a 7 Tesla MRI study. Mult Scler. 2013;19:316–25.

    PubMed  Google Scholar 

  122. Ge Y, Law M, Johnson G, Herbert J, Babb JS, Mannon LJ, et al. Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol. 2005;26:1539–47.

    PubMed  Google Scholar 

  123. Amann M, Achtnichts L, Hirsch JG, Naegelin Y, Gregori J, Weier K, et al. 3D GRASE arterial spin labelling reveals an inverse correlation of cortical perfusion with the white matter lesion volume in MS. Mult Scler. 2012;18:1570–6.

    PubMed  Google Scholar 

  124. Juhler M, Paulson OB. Regional cerebral blood flow in acute experimental allergic encephalomyelitis. Brain Res. 1986;363:272–8.

    CAS  PubMed  Google Scholar 

  125. Williams R, Rohr AM, Wang WT, Choi IY, Lee P, Berman NE, et al. Iron deposition is independent of cellular inflammation in a cerebral model of multiple sclerosis. BMC Neurosci. 2011;12:59.

    PubMed  PubMed Central  Google Scholar 

  126. Brooks DJ, Leenders KL, Head G, Marshall J, Legg NJ, Jones T. Studies on regional cerebral oxygen utilisation and cognitive function in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1984;47:1182–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ge Y, Zohrabian VM, Osa EO, Xu J, Jaggi H, Herbert J, et al. Diminished visibility of cerebral venous vasculature in multiple sclerosis by susceptibility-weighted imaging at 3.0 Tesla. J Magn Reson Imaging. 2009;29:1190–4.

    PubMed  PubMed Central  Google Scholar 

  128. Ge Y, Zhang Z, Lu H, Tang L, Jaggi H, Herbert J, et al. Characterizing brain oxygen metabolism in patients with multiple sclerosis with T2-relaxation-under-spin-tagging MRI. J Cereb Blood Flow Metab. 2012;32:403–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Nathoo N, Agrawal S, Wu Y, Haylock-Jacobs S, Yong VW, Foniok T, et al. Susceptibility-weighted imaging in the experimental autoimmune encephalomyelitis model of multiple sclerosis indicates elevated deoxyhemoglobin, iron deposition and demyelination. Mult Scler. 2013;19:721–31.

    PubMed  Google Scholar 

  130. Aboul-Enein F, Rauschka H, Kornek B, Stadelmann C, Stefferl A, Brück W, et al. Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropathol Exp Neurol. 2003;62:25–33.

    CAS  PubMed  Google Scholar 

  131. Lassmann H. Hypoxia-like tissue injury as a component of multiple sclerosis lesions. J Neurol Sci. 2003;206:187–91.

    CAS  PubMed  Google Scholar 

  132. Graumann U, Reynolds R, Steck AJ, Schaeren-Wiemers N. Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol. 2003;13:554–73.

    CAS  PubMed  Google Scholar 

  133. Mháille AN, McQuaid S, Windebank A, Cunnea P, McMahon J, Samali A, et al. Increased expression of endoplasmic reticulum stress-related signaling pathway molecules in multiple sclerosis lesions. J Neuropathol Exp Neurol. 2008;67:200–11.

    PubMed  Google Scholar 

  134. Cunnea P, Mháille AN, McQuaid S, Farrell M, McMahon J, FitzGerald U. Expression profiles of endoplasmic reticulum stress-related molecules in demyelinating lesions and multiple sclerosis. Mult Scler. 2011;17:808–18.

    PubMed  Google Scholar 

  135. McMahon JM, McQuaid S, Reynolds R, FitzGerald UF. Increased expression of ER stress- and hypoxia-associated molecules in grey matter lesions in multiple sclerosis. Mult Scler. 2012;18:1437–47.

    CAS  PubMed  Google Scholar 

  136. Paling D, Golay X, Wheeler-Kingshott C, Kapoor R, Miller D. Energy failure in multiple sclerosis and its investigation using MR techniques. J Neurol. 2011;258:2113–27.

    PubMed  Google Scholar 

  137. Aboul-Enein F, Lassmann H. Mitochondrial damage and histotoxic hypoxia: a pathway of tissue injury in inflammatory brain disease? Acta Neuropathol. 2005;109:49–55.

    CAS  PubMed  Google Scholar 

  138. Mahad D, Lassmann H, Turnbull D. Review: Mitochondria and disease progression in multiple sclerosis. Neuropathol Appl Neurobiol. 2008;34:577–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Campbell GR, Mahad DJ. Mitochondrial changes associated with demyelination: consequences for axonal integrity. Mitochondrion. 2012;12:173–9.

    CAS  PubMed  Google Scholar 

  140. Raza H, John A. Implications of altered glutathione metabolism in aspirin-induced oxidative stress and mitochondrial dysfunction in HepG2 cells. PLoS One. 2012;7:e36325.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Srinivasan R, Ratiney H, Hammond-Rosenbluth KE, Pelletier D, Nelson SJ. MR spectroscopic imaging of glutathione in the white and gray matter at 7 T with an application to multiple sclerosis. Magn Reson Imaging. 2010;28:163–70.

    CAS  PubMed  Google Scholar 

  142. Choi IY, Lee SP, Denney DR, Lynch SG. Lower levels of glutathione in the brains of secondary progressive multiple sclerosis patients measured by 1H magnetic resonance chemical shift imaging at 3 T. Mult Scler. 2011;17:289–96.

    CAS  PubMed  Google Scholar 

  143. Hirst J, King MS, Pryde KR. The production of reactive oxygen species by complex I. Biochem Soc Trans. 2008;36:976–80.

    CAS  PubMed  Google Scholar 

  144. Marshall O, Lu H, Brisset JC, Xu F, Liu P, Herbert J, et al. Impaired cerebrovascular reactivity in multiple sclerosis. JAMA Neurol. 2014;71:1275–81.

    PubMed  PubMed Central  Google Scholar 

  145. Schröder H. Nitric oxide and aspirin: a new mediator for an old drug. Am J Ther. 2009;16:17–23.

    PubMed  Google Scholar 

  146. Kabirian F, Amoabediny G, Haghighipour N, Salehi-Nik N, Zandieh-Doulabi B. Nitric oxide secretion by endothelial cells in response to fluid shear stress, aspirin, and temperature. J Biomed Mater Res A. 2015;103:1231–7.

    PubMed  Google Scholar 

  147. Miller H, Newell DJ, Ridley A. Multiple Sclerosis. Trials of maintenance treatment with prednisolone and soluble aspirin. Lancet. 1961;1:127–9.

    CAS  PubMed  Google Scholar 

  148. Miller HG, Foster JB, Newell DJ, Barwick DD, Brewis RA. Multiple sclerosis: therapeutic trials of chloroquine, soluble aspirin, and gammaglobulin. Br Med J. 1963;2:1436–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Good RA, Campbell B, Good TA. Prophylactic and therapeutic effect of para-aminobenzoic acid and sodium salicylate on experimental allergic encephalomyelitis. Proc Soc Exp Biol Med. 1949;72:341–7.

    CAS  PubMed  Google Scholar 

  150. Kolb LC, Karlson AG, Sayre GP. Prevention of experimental allergic encephalomyelitis by various agents. Trans Am Neurol Assoc. 1952;56:117–21.

    CAS  PubMed  Google Scholar 

  151. Weston PG, Johnston PV. Incidence and severity of experimental allergic encephalomyelitis and cerebral prostaglandin synthesis in essential fatty acid deficient and aspirin-treated rats. Lipids. 1978;13:867–72.

    CAS  PubMed  Google Scholar 

  152. Moon C, Ahn M, Jee Y, Heo S, Kim S, Kim H, et al. Sodium salicylate-induced amelioration of experimental autoimmune encephalomyelitis in Lewis rats is associated with the suppression of inducible nitric oxide synthase and cyclooxygenases. Neurosci Lett. 2004;356:123–6.

    CAS  PubMed  Google Scholar 

  153. Marusic S, Thakker P, Pelker JW, Stedman NL, Lee KL, McKew JC, et al. Blockade of cytosolic phospholipase A2 alpha prevents experimental autoimmune encephalomyelitis and diminishes development of Th1 and Th17 responses. J Neuroimmunol. 2008;204:29–37.

    CAS  PubMed  Google Scholar 

  154. Miyamoto K, Miyake S, Mizuno M, Oka N, Kusunoki S, Yamamura T. Selective COX-2 inhibitor celecoxib prevents experimental autoimmune encephalomyelitis through COX-2-independent pathway. Brain. 2006;129:1984–92.

    PubMed  Google Scholar 

  155. Wang YP, Wu Y, Li LY, Zheng J, Liu RG, Zhou JP, et al. Aspirin-triggered lipoxin A4 attenuates LPS-induced pro-inflammatory responses by inhibiting activation of NF-κB and MAPKs in BV-2 microglial cells. J Neuroinflammation. 2011;8:95.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Wu Y, Zhai H, Wang Y, Li L, Wu J, Wang F, et al. Aspirin-triggered lipoxin A4 attenuates lipopolysaccharide-induced intracellular ROS in BV2 microglia cells by inhibiting the function of NADPH oxidase. Neurochem Res. 2012;37:1690–6.

    CAS  PubMed  Google Scholar 

  157. Wang Z, Huang W, Zuo Z. Perioperative aspirin improves neurological outcome after focal brain ischemia possibly via inhibition of Notch 1 in rat. J Neuroinflammation. 2014;11:56.

    PubMed  PubMed Central  Google Scholar 

  158. Prüss H, Rosche B, Sullivan AB, Brommer B, Wengert O, Gronert K, et al. Proresolution lipid mediators in multiple sclerosis - differential, disease severity-dependent synthesis - a clinical pilot trial. PLoS One. 2013;8:e55859.

    PubMed  PubMed Central  Google Scholar 

  159. Schwab JM, Serhan CN. Lipoxins and new lipid mediators in the resolution of inflammation. Curr Opin Pharmacol. 2006;6:414–20.

    CAS  PubMed  Google Scholar 

  160. Ishizuka T, Niwa A, Tabuchi M, Ooshima K, Higashino H. Acetylsalicylic acid provides cerebrovascular protection from oxidant damage in salt-loaded stroke-prone rats. Life Sci. 2008;82:806–15.

    CAS  PubMed  Google Scholar 

  161. Modi KK, Sendtner M, Pahan K. Up-regulation of ciliary neurotrophic factor in astrocytes by aspirin: implications for remyelination in multiple sclerosis. J Biol Chem. 2013;288:18533–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Stankoff B, Aigrot MS, Noël F, Wattilliaux A, Zalc B, Lubetzki C. Ciliary neurotrophic factor (CNTF) enhances myelin formation: a novel role for CNTF and CNTF-related molecules. J Neurosci. 2002;22:9221–7.

    CAS  PubMed  Google Scholar 

  163. Chen J, Zuo S, Wang J, Huang J, Zhang X, Liu Y, et al. Aspirin promotes oligodendrocyte precursor cell proliferation and differentiation after white matter lesion. Front Aging Neurosci. 2014;6:7.

    PubMed  PubMed Central  Google Scholar 

  164. Sumowski JF, Leavitt VM. Body temperature is elevated and linked to fatigue in relapsing-remitting multiple sclerosis, even without heat exposure. Arch Phys Med Rehabil. 2014;95:1298–302.

    PubMed  PubMed Central  Google Scholar 

  165. Nagaraj K, Taly AB, Gupta A, Prasad C, Christopher R. Depression and sleep disturbances in patients with multiple sclerosis and correlation with associated fatigue. J Neurosci Rural Pract. 2013;4:387–91.

    PubMed  PubMed Central  Google Scholar 

  166. Veauthier C, Paul F. Sleep disorders in multiple sclerosis and their relationship to fatigue. Sleep Med. 2014;15:5–14.

    PubMed  Google Scholar 

  167. Heesen C, Nawrath L, Reich C, Bauer N, Schulz KH, Gold SM. Fatigue in multiple sclerosis: an example of cytokine mediated sickness behaviour? J Neurol Neurosurg Psychiatry. 2006;77:34–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Roelcke U, Kappos L, Lechner-Scott J, Brunnschweiler H, Huber S, Ammann W, et al. Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18Ffluorodeoxyglucose positron emission tomography study. Neurology. 1997;48:1566–71.

    CAS  PubMed  Google Scholar 

  169. Calabrese M, Rinaldi F, Grossi P, Mattisi I, Bernardi V, Favaretto A, et al. Basal ganglia and frontal/parietal cortical atrophy is associated with fatigue in relapsing-remitting multiple sclerosis. Mult Scler. 2010;16:1220–8.

    PubMed  Google Scholar 

  170. Finke C, Schlichting J, Papazoglou S, Scheel M, Freing A, Soemmer C, et al. Altered basal ganglia functional connectivity in multiple sclerosis patients with fatigue. Mult Scler. 2014. [Epub ahead of print].

  171. Schwid SR, Murray TJ. Treating fatigue in patients with MS: one step forward, one step back. Neurology. 2005;64:1111–2.

    PubMed  Google Scholar 

  172. Côté I, Trojan DA, Kaminska M, Cardoso M, Benedetti A, Weiss D, et al. Impact of sleep disorder treatment on fatigue in multiple sclerosis. Mult Scler. 2013;19:480–9.

    PubMed  Google Scholar 

  173. Veauthier C, Gaede G, Radbruch H, Gottschalk S, Wernecke KD, Paul F. Treatment of sleep disorders may improve fatigue in multiple sclerosis. Clin Neurol Neurosurg. 2013;115:1826–30.

    PubMed  Google Scholar 

  174. Carter A, Daley A, Humphreys L, Snowdon N, Woodroofe N, Petty J, et al. Pragmatic intervention for increasing self-directed exercise behaviour and improving important health outcomes in people with multiple sclerosis: a randomised controlled trial. Mult Scler. 2014;20:1112–22.

    CAS  PubMed  Google Scholar 

  175. Achiron A, Givon U, Magalashvili D, Dolev M, Liraz Zaltzman S, Kalron A, et al. Effect of Alfacalcidol on multiple sclerosis-related fatigue: a randomized, double-blind placebo-controlled study. Mult Scler. 2015;21:767–75.

    CAS  PubMed  Google Scholar 

  176. Wingerchuk DM, Benarroch EE, O’Brien PC, Keegan BM, Lucchinetti CF, Noseworthy JH, et al. A randomized controlled crossover trial of aspirin for fatigue in multiple sclerosis. Neurology. 2005;64:1267–9.

    CAS  PubMed  Google Scholar 

  177. Shaygannejad V, Janghorbani M, Ashtari F, Zakeri H. Comparison of the effect of aspirin and amantadine for the treatment of fatigue in multiple sclerosis: a randomized, blinded, crossover study. Neurol Res. 2012;34:854–8.

    CAS  PubMed  Google Scholar 

  178. Wingerchuk D, Keegan M, Shuster E, Carter J, Hentz J, Thaera G, et al. Aspirin is unlikely to have a clinically meaningful effect on multiple sclerosis-related fatigue: data from a randomized controlled trial (P7.245). Neurol. 2014;82:P7.245.

    Google Scholar 

  179. Comi G, Leocani L, Rossi P, Colombo B. Physiopathology and treatment of fatigue in multiple sclerosis. J Neurol. 2001;248:174–9.

    CAS  PubMed  Google Scholar 

  180. Koch MW, Patten S, Berzins S, Zhornitsky S, Greenfield J, Wall W, et al. Depression in multiple sclerosis: a long-term longitudinal study. Mult Scler. 2015;21:76–82.

    PubMed  Google Scholar 

  181. Berk M, Dean O, Drexhage H, McNeil JJ, Moylan S, O’Neil A, et al. Aspirin: a review of its neurobiological properties and therapeutic potential for mental illness. BMC Med. 2013;11:74.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Pasco JA, Jacka FN, Williams LJ, Henry MJ, Nicholson GC, Kotowicz MA, et al. Clinical implications of the cytokine hypothesis of depression: the association between use of statins and aspirin and the risk of major depression. Psychother Psychosom. 2010;79:323–5.

    PubMed  Google Scholar 

  183. Sarkar S, Chadda RK, Kumar N, Narang R. Anxiety and depression in patients with myocardial infarction: findings from a centre in India. Gen Hosp Psychiatry. 2012;34:160–6.

    PubMed  Google Scholar 

  184. Ketterer MW, Brymer J, Rhoads K, Kraft P, Lovallo WR. Is aspirin, as used for antithrombosis, an emotion-modulating agent? J Psychosom Res. 1996;40:53–8.

    CAS  PubMed  Google Scholar 

  185. Guan XT, Shao F, Xie X, Chen L, Wang W. Effects of aspirin on immobile behavior and endocrine and immune changes in the forced swimming test: comparison to fluoxetine and imipramine. Pharmacol Biochem Behav. 2014;124:361–6.

    CAS  PubMed  Google Scholar 

  186. Mendlewicz J, Kriwin P, Oswald P, Souery D, Alboni S, Brunello N. Shortened onset of action of antidepressants in major depression using acetylsalicylic acid augmentation: a pilot open-label study. Int Clin Psychopharmacol. 2006;21:227–31.

    PubMed  Google Scholar 

  187. Brunello N, Alboni S, Capone G, Benatti C, Blom JM, Tascedda F, et al. Acetylsalicylic acid accelerates the antidepressant effect of fluoxetine in the chronic escape deficit model of depression. Int Clin Psychopharmacol. 2006;21:219–25.

    PubMed  Google Scholar 

  188. Wang Y, Yang F, Liu YF, Gao F, Jiang W. Acetylsalicylic acid as an augmentation agent in fluoxetine treatment resistant depressive rats. Neurosci Lett. 2011;499:74–9.

    CAS  PubMed  Google Scholar 

  189. Ghanizadeh A, Hedayati A. Augmentation of citalopram with aspirin for treating major depressive disorder, a double blind randomized placebo controlled clinical trial. Antiinflamm Antiallergy Agents Med Chem. 2014;13:108–11.

    CAS  PubMed  Google Scholar 

  190. Warner-Schmidt JL, Vanover KE, Chen EY, Marshall JJ, Greengard P. Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proc Natl Acad Sci U S A. 2011;108:9262–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Labos C, Dasgupta K, Nedjar H, Turecki G, Rahme E. Risk of bleeding associated with combined use of selective serotonin reuptake inhibitors and antiplatelet therapy following acute myocardial infarction. CMAJ. 2011;183:1835–43.

    PubMed  PubMed Central  Google Scholar 

  192. Adams CW. Perivascular iron deposition and other vascular damage in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1988;51:260–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Bagnato F, Hametner S, Yao B, van Gelderen P, Merkle H, Cantor FK, et al. Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla. Brain. 2011;134:3602–15.

    PubMed  Google Scholar 

  194. Mehta V, Pei W, Yang G, Li S, Swamy E, Boster A, et al. Iron is a sensitive biomarker for inflammation in multiple sclerosis lesions. PLoS One. 2013;8:e57573.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Bamm VV, Harauz G. Hemoglobin as a source of iron overload in multiple sclerosis: does multiple sclerosis share risk factors with vascular disorders? Cell Mol Life Sci. 2014;71:1789–98.

    CAS  PubMed  Google Scholar 

  196. Segal JB, Powe NR. Prevalence of immune thrombocytopenia: analyses of administrative data. J Thromb Haemost. 2006;4:2377–83.

    CAS  PubMed  Google Scholar 

  197. Kessler CM. Immune thrombocytopenic purpura treatment & management. Medscape 2014. http://emedicine.medscape.com/article/202158-treatment. Accessed 8 Jan 2015.

  198. Risser A, Donovan D, Heintzman J, Page T. NSAID prescribing precautions. Am Fam Physician. 2009;80:1371–8.

    PubMed  Google Scholar 

  199. Myers EN, Bernstein JM. Salicylate ototoxicity; a clinical and experimental study. Arch Otolaryngol. 1965;82:483–93.

    CAS  PubMed  Google Scholar 

  200. Cazals Y. Auditory sensori-neural alterations induced by salicylate. Prog Neurobiol. 2000;62:583–631.

    CAS  PubMed  Google Scholar 

  201. Lobarinas E, Sun W, Cushing R, Salvi R. A novel behavioral paradigm for assessing tinnitus using schedule-induced polydipsia avoidance conditioning (SIP-AC). Hear Res. 2004;190:109–14.

    PubMed  Google Scholar 

  202. Cianfrone G, Pentangelo D, Cianfrone F, Mazzei F, Turchetta R, Orlando MP, et al. Pharmacological drugs inducing ototoxicity, vestibular symptoms and tinnitus: a reasoned and updated guide. Eur Rev Med Pharmacol Sci. 2011;15:601–36.

    CAS  PubMed  Google Scholar 

  203. Sheppard A, Hayes SH, Chen GD, Ralli M, Salvi R. Review of salicylate-induced hearing loss, neurotoxicity, tinnitus and neuropathophysiology. Acta Otorhinolaryngol Ital. 2014;34:79–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Stolzberg D, Salvi RJ, Allman BL. Salicylate toxicity model of tinnitus. Front Syst Neurosci. 2012;6:28.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Day RO, Graham GG, Bieri D, Brown M, Cairns D, Harris G, et al. Concentration-response relationships for salicylate-induced ototoxicity in normal volunteers. Br J Clin Pharmacol. 1989;28:695–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Jenkins C, Costello J, Hodge L. Systematic review of prevalence of aspirin induced asthma and its implications for clinical practice. BMJ. 2004;328:434.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Vally H, Taylor ML, Thompson PJ. The prevalence of aspirin intolerant asthma (AIA) in Australian asthmatic patients. Thorax. 2002;57:569–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Levy S, Volans G. The use of analgesics in patients with asthma. Drug Saf. 2001;24:829–41.

    CAS  PubMed  Google Scholar 

  209. Szczeklik A, Stevenson DD. Aspirin-induced asthma: advances in pathogenesis, diagnosis, and management. J Allergy Clin Immunol. 2003;111:913–21.

    CAS  PubMed  Google Scholar 

  210. Gollapudi RR, Teirstein PS, Stevenson DD, Simon RA. Aspirin sensitivity: implications for patients with coronary artery disease. JAMA. 2004;292:3017–23.

    CAS  PubMed  Google Scholar 

  211. Lider O, Baharav E, Mekori YA, Miller T, Naparstek Y, Vlodavsky I, et al. Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with low doses of heparins. J Clin Invest. 1989;83:752–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Olsen JA, Akirav EM. Remyelination in multiple sclerosis: cellular mechanisms and novel therapeutic approaches. J Neurosci Res. 2015;93:687–96.

    CAS  PubMed  Google Scholar 

  213. Curhan SG, Eavey R, Shargorodsky J, Curhan GC. Analgesic use and the risk of hearing loss in men. Am J Med. 2010;123:231–7.

    CAS  PubMed  PubMed Central  Google Scholar 


Page 2

Skip to main content

From: Aspirin and multiple sclerosis

Feature Description ASA’s effect
Ischemic stroke MS patients may have an increased risk of stroke [17, 18, 20, 36, 37]. ASA reduces the risk of ischemic stroke in some subjects, for example, those who had a previous stroke [24–26, 79]. ASA decreases platelet activation and aggregation through irreversible inhibition of platelet COX-1, and the resultant decrease in TXA2 production has a cardioprotective effect [57, 64]. It is unknown whether the risk of strokes in MS patients will be reduced in response to ASA.
Thrombosis MS patients have an increased risk of venous thrombosis [18, 19, 21–23, 39]. ASA lowers the incidence of venous thrombosis in some subjects, for example, orthopedic surgery patients and those who experienced an unprovoked venous thromboembolism [27, 28, 88]. It is not known whether the risk of venous thrombosis is reduced in response to ASA in MS patients, but ASA reduces the risk for first thrombosis in patients with APLAs [107].
A higher percentage of MS patients have APLAs than controls [96–98]. APLAs are a diagnostic feature of APS, which involves thromboses.
Platelets Platelets are activated in MS and have been implicated in contributing to MS pathogenesis, such as by promoting inflammation [71, 72, 111]. Anticoagulants decreased the severity of EAE [110, 211]. ASA lowers one indicator of platelet activation in MS patients.
Fibrin Limiting fibrin formation reduced EAE disease activity [114, 115]. Fibrin deposition may activate microglia [113]. ASA may lessen fibrin deposition and induce fibrinolysis [116].
Thrombin Is thought to promote inflammatory disease states of the CNS [117], and thrombin is associated with multiple pathological features in EAE [118]. ASA may decrease thrombin at microvascular injury sites [119].
Microglia Activated microglia can have a pro-pathogenic role in MS [3–5]. ASA may reduce production of proinflammatory cytokines and reactive oxygen species (ROS) by microglia [155–157].
Inflammation Multiple components of inflammation (for example, ROS, proinflammatory cytokines) are thought to contribute to MS pathogenesis. ASA may promote the resolution of inflammation via the production of lipoxin A4 [158, 159].
Remyelination Remyelination is incomplete in MS [212]. ASA may increase ciliary neurotrophic factor and promote the differentiation and proliferation of oligodendrocyte precursors [161, 163].
Fatigue Fatigue is a common symptom of MS. ASA may reduce fatigue in MS patients via antipyretic effects or by countering proinflammatory cytokines [164, 176, 177].
Depression Depression is more common in MS than in the general population [180]. ASA usage may lower the risk for major depression, and some evidence shows that ASA in combination with fluoxetine enhances treatment for depression [181, 182, 188]. It is unknown whether ASA would help to reduce depression in MS, but other studies suggest that it can have negative impacts or side effects in depressed patients (see Table 2)
General disease activity MS patients given calcium aspirin (Solprin) [147, 148] or EAE subjects given sodium salicylate or ASA [149–152]. Studies were performed decades ago. Overall, the outcome is inconclusive. There was no effect in MS patients [147, 148], but evaluation was done using an outdated measure of disease activity. In EAE, disease onset was delayed and/or disease incidence reduced in 3 out of 4 studies [149, 151, 152]. Treatment after clinical signs appeared resulted in no benefit [149], and in one study disease severity was increased although disease onset was delayed [151].