What is the primary excretory route for water-soluble vitamins A bile b kidney c intestine D perspiration?

1. Quadros EV. Advances in the understanding of cobalamin assimilation and metabolism. Br. J. Haematol. 2010;148:195–204. [PMC free article] [PubMed] [Google Scholar]

2. Fischer H, Schwarzer C, Illek B. Vitamin C controls the cystic fibrosis transmembrane conductance regulator chloride channel. Proc. Nat. Acad. Sci. U.S.A. 2004;101:3691–3696. [PMC free article] [PubMed] [Google Scholar]

3. Bianchi J, Wilson FA, Rose RC. Dehydroascorbic acid and ascorbic acid transport in the guinea pig ileum. Am. J. Physiol. 1986;250:G461–G468. [PubMed] [Google Scholar]

4. Choi JL, Rose RC. Regeneration of ascorbic acid by rat colon. Proc. Soc. Exp. Biol. Med. 1989;190:369–374. [PubMed] [Google Scholar]

5. Schell DA, Bode AM. Measurement of ascorbic acid and dehydroascorbic acid in mammalian tissue utilizing HPLC and electrochemical detection. Biomed. Chromatogr. 1993;7:267–272. [PubMed] [Google Scholar]

6. Wrong OM, Edmonds CJ, Chadwick VS. The Large Intestine: its Role in Mammalian Nutrition and Homeostasis. Wiley and Sons; New York: 1981. [Google Scholar]

7. Rose RC. In: Intestinal absorption of water-soluble vitamins. Physiology of the Gastrointestinal Tract. Johnson LR, editor. Raven Press; New York: 1987. pp. 1581–1596. [Google Scholar]

8. Said HM. Recent advances in carrier-mediated absorption of water-soluble vitamins. Annu. Rev. Physiol. 2004;66:419–446. [PubMed] [Google Scholar]

9. Said HM, Seetharam B. Intestinal absorption of vitamins. In: Johnson LR, Barrett KE, Ghishan FK, Merchand JM, Said HM, Wood JD, editors. Physiology of the Gastrointestinal Tract. 4th edn Vol. 2. Academic Press; New York: 2006. pp. 1791–1826. [Google Scholar]

10. Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen X, Wang Y, Brubaker RF, Hediger MA. A family of mammalian Na+-dependent l-ascorbic acid transporters. Nature. 1999;399:70–75. [PubMed] [Google Scholar]

11. Wang H, Mackenzie B, Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA. Human vitamin C (l-ascorbic acid) transporter SVCT1. Biochim. Biophys. Res. Commun. 2000;267:488–494. [PubMed] [Google Scholar]

12. Subramanian VS, Marchant JS, Reidling JC, Said HM. N-Glycosylation is required for Na+-dependent vitamin C transporter functionality. Biochem. Biophys. Res. Commun. 2008;374:123–127. [PMC free article] [PubMed] [Google Scholar]

13. Liang WJ, Johnson D, Jarvis SM. Vitamin C transport systems of mammalian cells. Mol. Membr. Biol. 2001;18:87–95. [PubMed] [Google Scholar]

14. Varma S, Campbell CE, Kuo S. Functional role of conserved transmembrane segment 1 residues in human sodium-dependent vitamin C transporters. Biochemistry. 2008;47:2952–2960. [PubMed] [Google Scholar]

15. Subramanian VS, Marchant JS, Boulware MJ, Said HM. A C-terminal region dictates the apical plasma membrane targeting of the human sodium-dependent vitamin C transporter-1 in polarized epithelia. J. Biol. Chem. 2004;279:27719–27728. [PubMed] [Google Scholar]

16. Boyer JC, Campbell CE, Sigurdson WJ, Kuo S. Polarized localization of vitamin C transports, SVCT1 and SVCT2, in epithelial cells. Biochem. Biophys. Res. Commun. 2005;334:150–156. [PubMed] [Google Scholar]

17. Michels AJ, Hagen TM. Hepatocyte nuclear factor 1 is essential for transcription of sodium-dependent vitamin C transporter protein 1. Am. J. Physiol. Cell Physiol. 2009;297:C1220–C1227. [PMC free article] [PubMed] [Google Scholar]

18. Reidling JC, Rubin SA. Promoter analysis of the human ascorbic acid transporters SVCT1 and SVCT2: mechanism of adaptive regulation in liver epithelial cells. J. Nutr. Biochem. 2011;22:344–350. [PMC free article] [PubMed] [Google Scholar]

19. Karasov WH, Darken BW, Bottum MC. Dietary regulation of intestinal ascorbate uptake in guinea pigs. Am. J. Physiol. 1991;260:G108–G118. [PubMed] [Google Scholar]

20. Rose RC, Nahrwold DL. Intestinal ascorbic acid transport following diets of high or low ascorbic acid content. Int. J. Vitam. Nutr. Res. 1978;48:382–386. [PubMed] [Google Scholar]

21. MacDonald L, Thumser AE, Sharp P. Decreased expression of the vitamin C transporter SVCT1 by ascorbic acid in a human intestinal epithelial cell line. Br. J. Nutr. 2002;87:97–100. [PubMed] [Google Scholar]

22. Amano A, Aigaki T, Maruyama N, Ishigami A. Ascorbic acid depletion enhaces expression of the sodium-dependent vitamin C transporters, SVCT1 and SVCT2, and uptake of ascorbic acid in livers of SMP30/GNL knockout mice. Arch. Biochem. Biophys. 2010;496:38–44. [PubMed] [Google Scholar]

23. Pinto M, Leon SR, Tappay M, Kedinger M, Triadou N, Dussayix M, Lacvrix B, Simon-Asswan P, Haffer N, Fiugh J, Zwiebaum A. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell. 1988;47:323–340. [Google Scholar]

24. Maulén NP, Henriquez EA, Kempe S, Cárcamo JG, Schmid-Kotsas A, Bachem M, Grünert A, Bustamante ME, Nualart F, Vera JC. Up-regulation and polarized expression of the sodium-ascorbic acid transporter SVCT1 in post-confluent differentiated Caco-2 cells. J. Biol. Chem. 2003;278:9035–9041. [PubMed] [Google Scholar]

25. Scheerger SB, Zempleni J. Expression of oncogenes depends on biotin in human small cell lung cancer cells NCI-H69. Int. J. Vit. Nutr. Res. 2003;73:461–467. [PubMed] [Google Scholar]

26. Collins JC, Paietta E, Green R, Morell AG, Stockert RJ. Biotin-dependent expression of the asialoglycoprotein receptor in HepG2 cells. J. Biol. Chem. 1988;263:11280–11283. [PubMed] [Google Scholar]

27. Vesely DL. Biotin enhances guanylate cyclase activity. Science. 1982;216:1329–1330. [PubMed] [Google Scholar]

28. Spence JT, Koudelka AP. Effect of biotin upon the intracellular level of cGMP and the activity of glucokinase in cultured rat hepatocytes. J. Biol. Chem. 1984;259:6393–6396. [PubMed] [Google Scholar]

29. Watanabe T. Teratogenic effect of biotin deficiency in mice. J. Nutr. 1983;113:574–581. [PubMed] [Google Scholar]

30. Cooper WA, Brown SO. Tissue abnormalities in newborn rats from biotin-deficient mothers. Texas J. Sci. 1958;10:60–68. [Google Scholar]

31. Mock DM, Mock NI, Stewart CW, LaBorde JB, Hansen DK. Marginal biotin deficiency is teratogenic in ICR mice. J. Nutr. 2003;133:2519–2525. [PMC free article] [PubMed] [Google Scholar]

32. Zempleni J, Mock DM. Marginal biotin deficiency is teratogenic. Proc. Soc. Exp. Biol. Med. 2000;223:14–21. [PubMed] [Google Scholar]

33. Sweetman L, Nyhan WL. Inheritable biotin-treatable disorders and associated phenomena. Annu. Rev. Nutr. 1986;6:314–343. [PubMed] [Google Scholar]

34. Krause KH, Berlit P, Bonjour JP. Impaired biotin status in anticonvulsant therapy. Ann. Neurol. 1982;12:485–486. [PubMed] [Google Scholar]

35. Lampen J, Hahler G, Peterson W. The occurrence of free and bound biotin. J. Nutr. 1942;23:11–21. [Google Scholar]

36. Krause KH, Bonjour J, Berlit P, Kochen W. Biotin status of epileptics. Ann. N. Y. Acad. Sci. 1985;447:297–313. [PubMed] [Google Scholar]

37. Forbes GM, Forbes A. Micronutrient status in patients receiving home parenteral nutrition. Nutrition. 1997;13:941–944. [PubMed] [Google Scholar]

38. Mock DM, deLorimer AA, Liebman WM, Sweetman L, Baker H. Biotin deficiency: an unusual complication of parenteral alimentation. N. Engl. J. Med. 1981;304:820–823. [PubMed] [Google Scholar]

39. Bonjour JP. Vitamins and alcoholism. V. Riboflavin, VI. Niacin, VII. Pantothenic acid, and VIII. Biotin. Int. J. Vitam. Nutr. Res. 1980;50:425–440. [PubMed] [Google Scholar]

40. Mock DM, Stadler DD, Stratton SL, Mock NI. Biotin status assessed longitudinally in pregnant women. J. Nutr. 1997;127:710–716. [PubMed] [Google Scholar]

41. Banares FF, Lacruz AA, Gine JJ, Esteve M, Gassull MA. Vitamin status in patients with inflammatory bowel disease. Am. J. Gastroenterol. 1989;84:744–748. [PubMed] [Google Scholar]

42. Sorrell MF, Frank O, Thomson AD, Aquino A, Baker H. Absorption of vitamins from the large intestine. Nutr. Res. Int. 1971;3:143–148. [Google Scholar]

43. Barth CA, Frigg M, Homogemeister H. Biotin absorption from the hindgut of the pig. J. Anim. Physiol. Anim. Nutr. 1986;55:128–134. [Google Scholar]

44. Brown BB, Rosenberg JH. Biotin absorption by distal rat intestine. J. Nutr. 1987;117:2121–2126. [PubMed] [Google Scholar]

45. Said HM, Ortiz A, McCloud E, Dyer D, Moyer MP, Rubin S. Biotin uptake by human colonic epithelial NCM460 cells: a carrier-mediated process shared with pantothenic acid. Am. J. Physiol. 1998;275:C1365–C1371. [PubMed] [Google Scholar]

46. Wolf B, Heard GS, Secor-McVoy JR, Raetz HM. Biotinidase deficiency: the possible role of biotinidase in the processing of dietary protein-bound biotin. J. Inherit. Metab. Dis. 1984;7:121–122. [PubMed] [Google Scholar]

47. Blanton SH, Pandya A, Landa BL, Javaheri R, Xia XJ, Nance WE, Pomponio RJ, Norrgard KJ, Swango KL, Demirkol M, et al. Fine mapping of the human biotinidase gene and haplotype analysis of five common mutations. Hum. Hered. 2000;50:102–111. [PubMed] [Google Scholar]

48. Said HM, Ortiz A, McCloud E, Dyer D, Moyer MP, Rubin S. Biotin uptake by the human colonic epithelial cells NCM460: a carrier-mediated process shared with pantothenic acid. Am. J. Physiol. 1998;44:C1365–C1371. [PubMed] [Google Scholar]

49. Said HM. Cellular uptake of biotin: mechanisms and regulation. J. Nutr. 1999;129:490S–493S. [PubMed] [Google Scholar]

50. Said HM, Redha R, Nylander W. A carrier-mediated, Na+ gradient-dependent transport system for biotin in human intestinal brush border membrane vesicles. Am. J. Physiol. 1987;253:G631–G636. [PubMed] [Google Scholar]

51. Said HM, Redha R. Biotin transport in brush border membrane vesicles of rat small intestine. Biochim. Biophys. Acta. 1988;945:195–201. [PubMed] [Google Scholar]

52. Said HM, Nylander W, Redha R. Biotin transport in human intestine: site of maximum transport and effect of pH. Gastroenterology. 1988;95:1312–1317. [PubMed] [Google Scholar]

53. Said HM, Redha R. Biotin transport in basolateral membrane vesicles of human intestine. Gastroenterology. 1988;94:1157–1163. [PubMed] [Google Scholar]

54. Said HM. Movement of biotin across the rat intestinal basolateral membrane: studies with membrane vesicles. Biochem. J. 1991;279:671–674. [PMC free article] [PubMed] [Google Scholar]

55. Subramanian VS, Marchant JS, Boulware MJ, Ma TY, Said HM. Membrane targeting and intracellular trafficking of the human sodium-dependent multivitamin transporter in polarized epithelial cells. Am. J. Physiol. Cell Physiol. 2009;296:C663–C671. [PMC free article] [PubMed] [Google Scholar]

56. Nabokina SM, Subramanian VS, Said HM. Comparative analysis of ontogenic changes in renal and intestinal biotin transport in the rat. Am. J. Physiol. Renal Physiol. 2003;284:F737–F742. [PubMed] [Google Scholar]

57. Wang H, Huang W, Fei Y-J, Xia H, Yang-Feng TL, Leibach FH, Devoe LD, Ganapathy V, Prasad PD. Cloning, functional expression, gene structure, and chromosomal localization. J. Biol. Chem. 1999;274:14875–14883. [PubMed] [Google Scholar]

58. Prasad PD, Wang H, Huang W, Fei Y, Leibach FH, Devoe LD, Ganapathy V. Cloning and functional characterization of the intestinal Na+ -dependent multivitamin transporter. Arch. Biochem. Biophys. 1999;366:95–106. [PubMed] [Google Scholar]

59. Chatterjee NS, Kumar CK, Ortiz A, Rubin SA, Said HM. Molecular mechanism of the intestinal biotin transport process. Am. J. Physiol. 1999;277:C605–C613. [PubMed] [Google Scholar]

60. Balamurugan K, Ortiz A, Said HM. Biotin uptake by human intestinal and liver epithelial cells: role of the SMVT system. Am. J. Physiol. Gastrointest. Liver Physiol. 2003;285:G73–G77. [PubMed] [Google Scholar]

61. Ghosal A, Said HM. Structure–function activity of the human sodium-dependent multivitamin transporter: role of His115 and His254. Am. J. Physiol. Cell Physiol. 2011;300:C97–C104. [PMC free article] [PubMed] [Google Scholar]

62. Nabokina SM, Subramanian VS, Said HM. Association of PDZ-containing protein PDZD11 with the human sodium-dependent multivitamin transporter. Am. J. Physiol. Gastrointest. Liver Physiol. 2010;300:G561–G567. [PMC free article] [PubMed] [Google Scholar]

63. Chatterjee NS, Rubin SA, Said HM. Molecular characterization of the 5′ regulatory region of rat sodium-dependent multivitamin transporter gene. Am. J. Physiol. Cell Physiol. 2001;280:C548–C555. [PubMed] [Google Scholar]

64. Dey S, Subramanian VS, Chatterjee NS, Rubin SA, Said HM. Characterization of the 5′ regulatory region of the human sodium-dependent multivitamin transporter, hSMVT. Biochim. Biophys. Acta. 2002;1574:187–192. [PubMed] [Google Scholar]

65. Reidling JC, Said HM. Regulation of the human biotin transporter hSMVT promoter by KLF-4 and AP-2: confirmation of promoter activity in vivo. Am. J. Physiol. Cell Physiol. 2007;292:C1305–C1312. [PubMed] [Google Scholar]

66. Said HM, Mock DM, Collins J. Regulation of intestinal biotin transport in the rat: effect of biotin deficiency and supplementation. Am. J. Physiol. 1989;256:G306–G311. [PubMed] [Google Scholar]

67. Reidling JC, Nabokina SM, Said HM. Molecular mechanisms involved in the adaptive regulation of human intestinal biotin uptake: a study of the hSMVT system. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;292:G275–G281. [PubMed] [Google Scholar]

68. Said HM, Redha R. Ontogenesis of the intestinal transport of biotin in the rat. Gastroenterology. 1988;94:68–72. [PubMed] [Google Scholar]

69. Said HM, Ortiz A, McCloud E, Dyer D, Moyer MP, Rubin SA. Biotin uptake by the human colonic epithelial cells NCM460: A carrier-mediated process shared with pantothenic acid. Am. J. Physiol. 1998;275:C1365–C1371. [PubMed] [Google Scholar]

70. Said HM. Cellular uptake of biotin: mechanisms and regulation. J. Nutr. 1999;129:490S–493S. [PubMed] [Google Scholar]

71. Fennelly J, Frank O, Baker H, Leevy CM. Peripheral neuropathy of the alcoholic: I, Aetiological role of aneurin and other B-complex vitamins. Br. Med. J. 1964;2:1290–1292. [PMC free article] [PubMed] [Google Scholar]

72. Subramanya SB, Subramanian VS, Kumar JS, Hoiness R, Said HM. Inhibition of intestinal biotin absorption by chronic alcohol feeding: cellular and molecular mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;300:G494–G501. [PMC free article] [PubMed] [Google Scholar]

73. Subramanian VS, Subramanya SB, Said HM. Chronic alcohol exposure negatively impacts the physiological and molecular parameters of the renal biotin reabsorption process. Am. J. Physiol. Renal Physiol. 2011;300:F611–F617. [PMC free article] [PubMed] [Google Scholar]

74. Said HM, Redha R, Nylander W. Biotin transport in the human intestine: inhibition by anticonvulsant drugs. Am. J. Clin. Nutr. 1987;49:127–131. [PubMed] [Google Scholar]

75. Qiu A, Jansen M, Sakaris A, Min SH, Chattopahyay S, Tsai E, Sandoval C, Zhao R, Akabas MH, Goldman ID. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell. 2006;127:917–928. [PubMed] [Google Scholar]

76. Geller J, Kronn D, Jayabose S, Sandoval C. Hereditary folate malabsorption: family report and review of the literature. Medicine. 2002;81:51–68. [PubMed] [Google Scholar]

77. Dudeja PK, Torania SA, Said HM. Evidence for the existence of an electroneutral, pH-dependent, DIDS-sensitive carrier-mediated folate uptake mechanism in the human colonic luminal membrane vesicles. Am. J. Physiol. 1997;272:G1408–G1415. [PubMed] [Google Scholar]

78. Kumar CK, Moyer MP, Dudeja PK, Said HM. A protein-tyrosine kinase regulated, pH-dependent carrier-mediated uptake system for folate by human normal colonic epithelial cell line NCM 460. J. Biol. Chem. 1997;272:6226–6231. [PubMed] [Google Scholar]

79. Rong NI, Selhub J, Goldin BR, Rosenberg I. Bacterially synthesized folate in rat large intestine is incorporated into host tissue folylpolyglutamates. J. Nutr. 1991;121:1955–1959. [PubMed] [Google Scholar]

80. Zhao R, Matherly LH, Goldman ID. Membrane transporters and folate homeostasis: intestinal absorption and transport into systemic compartments and tissues. Expert Rev. Mol. Med. 2009;11:1–27. [PMC free article] [PubMed] [Google Scholar]

81. Sirotnak FM, Tolner B. Carrier-mediated membrane transport of folates in mammalian cells. Annu. Rev. Nutr. 1999;19:91–122. [PubMed] [Google Scholar]

82. Dixon KH, Lampher BC, Chiu J, Kelly K, Cowan KH. A novel cDNA restores reduced folate carrier activity and methotraxate sensitivity to transport deficient cells. J. Biol. Chem. 1994;269:17–20. [PubMed] [Google Scholar]

83. Williams FMR, Murray RC, Underhill TM, Flintoff WF. Isolation of hamster cDNA clone coding for a function involved in methotrexate uptake. J. Biol. Chem. 1994;269:5810–5816. [PubMed] [Google Scholar]

84. Nguyen TT, Dyer DL, Dunning DD, Rubin SA, Said HM. Human intestinal folate transport: cloning, expression and distribution of complementary RNA. Gastroenterology. 1997;112:783–791. [PubMed] [Google Scholar]

85. Matherly LH, Hou Z. Structure and function of the reduced folate carrier a paradigm of a major facilitator superfamily mammalian nutrient transporter. Vitam. Horm. 2008;79:145–184. [PMC free article] [PubMed] [Google Scholar]

86. Wang Y, Zhao R, Russel RG, Goldman ID. Localization of the murine reduced folate carrier as assessed by immunohistochemical analysis. Biochim. Biophys. Acta. 2001;1513:49–54. [PubMed] [Google Scholar]

87. Dudeja PK, Kode A, Alnounou M, Tyagi S, Torania S, Subramanian VS, Said HM. Mechanism of folate transport across the human colonic basolateral membrane. Am. J. Physiol. Gastrointest. Liver Physiol. 2001;281:G54–G60. [PubMed] [Google Scholar]

88. Unal ES, Zhao R, Qiu A, Coldman D. N-linked glycosylation and its impact on the electrophoreticmobility and function of the human proton-coupled folate transporter (HsPCFT). Biochim. Biophys. Acta. 2008;1778:1407–1414. [PMC free article] [PubMed] [Google Scholar]

89. Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, Khan Y, Warley A, McCann FE, Hider RC, et al. Identification of an intestinal heme transporter. Cell. 2005;122:789–801. [PubMed] [Google Scholar]

90. Subramanian VS, Marchant JS, Said HM. Apical membrane targeting and trafficking of the human proton-coupled folate transporter in polarized epithelia. Am. J. Physiol. Cell Physiol. 2008;294:C233–C240. [PubMed] [Google Scholar]

91. Said HM, Blair JA, Lucas ML, Hilburn ME. Intestinal surface acid microclimate in vitro and in vivo in the rat. J. Lab. Clin. Med. 1986;107:420–424. [PubMed] [Google Scholar]

92. Liu XY, Witt TL, Matherly LH. Restoration of high-level transport activity by human reduced folate carrier/ThTr1 thiamine transporter chimaeras: role of the transmembrane domain 6/7 linker region in reduced folate carrier function. Biochem. J. 2003;369:31–37. [PMC free article] [PubMed] [Google Scholar]

93. Sadlish H, Williams F, Flintoff W. Cytoplasmic domains of the reduced folate carrier are essential for trafficking, but not function. Biochem. J. 2002;364:777–786. [PMC free article] [PubMed] [Google Scholar]

94. Unal ES, Zhao R, Chang MH, Fiser A, Romero MF, Goldman ID. The functional roles of the His247 and His281 residues in folate and proton translocation mediated by the human proton-coupled folate transporter SLC46A1. J. Biol. Chem. 2009;284:17846–17857. [PMC free article] [PubMed] [Google Scholar]

95. Subramanian VS, Marchant JS, Parker I, Said HM. Intracellular trafficking/membrane targeting of human reduced folate carrier expressed in Xenopus oocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 2001;281:G1477–G1486. [PubMed] [Google Scholar]

96. Marchant JS, Subramanian VS, Parker I, Said HM. Intracellular trafficking and membrane targeting mechanisms of the human reduced folate carrier in mammalian epithelial cells. J. Biol. Chem. 2002;277:33325–33333. [PubMed] [Google Scholar]

97. Ashokkumar B, Nabokina SM, Ma TY, Said HM. Identification of dynein light chain road block-1 as a novel interaction partner with the human reduced folate carrier. Am. J. Physiol. Gastrointest. Liver Physiol. 2009;297:G480–G487. [PMC free article] [PubMed] [Google Scholar]

98. Stark M, Gonen N, Assaraf YG. Functional elements in the minimal promoter of the human proton-coupled folate transporter. Biochem. Biophys. Res. Commun. 2009;388:79–85. [PubMed] [Google Scholar]

99. Said HM, Chatterjee H, Haq RU, Subramanian VS, Ortiz A, Matherly LH, Sirotnak FM, Halsted C, Rubin SA. Adaptive regulation of intestinal folate uptake: effect of dietary folate deficiency. Am. J. Physiol. Cell Physiol. 2000;279:C1889–C1895. [PubMed] [Google Scholar]

100. Qiu A, Min SH, Jansen M, Usha M, Tsai E, Cabelof DC, Matherly LH, Zhao R, Akabas MH, Goldman ID. Rodent intestinal folate transporters (SLC46A1): secondary structure functional properties and response to dietary folate restriction. Am. J. Physiol. Cell Physiol. 2007;293:C1669–C1678. [PubMed] [Google Scholar]

101. Subramanian VS, Chatterjee N, Said HM. Folate uptake in the human intestine: promoter activity and effect of folate deficiency. J. Cell. Physiol. 2003;196:403–408. [PubMed] [Google Scholar]

102. Ashokkumar B, Mohammed ZM, Vaziri ND, Said HM. Effect of folate oversupplementation on folate uptake by human intestinal and renal epithelial cells. Am. J. Clin. Nutr. 2007;86:159–166. [PubMed] [Google Scholar]

103. Shafizadeh TB, Halsted CH. Postnatal ontogeny of intestinal GCPII and the RFC in pig. Am. J. Physiol. Gastrointest. Liver Physiol. 2009;296:G476–G481. [PubMed] [Google Scholar]

104. Said HM, Ghishan FK, Murrell JE. Ontogenesis of intestinal transport of 5-methyltetrahydrofolate in the rat. Am. J. Physiol. 1985;249:G567–G571. [PubMed] [Google Scholar]

105. Balamurugan K, Said HM. Ontogenic regulation of folate transportacross rat jejunal brush-border membrane. Am. J. Physiol. Gastrointest. Liver Physiol. 2003;285:G1068–G1073. [PubMed] [Google Scholar]

106. Subramanian VS, Reidling JC, Said HM. Differentiation-dependent regulation of the intestinal folate uptake process: studies with Caco-2 cells and native mouse intestine. Am. J. Physiol. Cell Physiol. 2008;295:C828–C835. [PMC free article] [PubMed] [Google Scholar]

107. Said HM, Ma TY, Ortiz A, Tapia A, Valerio CK. Intracellular regulation of intestinal folate uptake: studies with cultured IEC-6 epithelial cells. Am. J. Physiol. 1997;272:C729–C736. [PubMed] [Google Scholar]

108. Halsted CH, Robles EA, Mezey E. Decreased jejunal uptake of labeled folic acid (3 H-PGA) in alcoholic patients: roles of alcohol and nutrition. N. Engl. J. Med. 1971;285:701–706. [PubMed] [Google Scholar]

109. Villanueva JA, Devlin AM, Halsted CH. Reduced folate carrier: tissue distribution and effects of chronic ethanol intake in the micropigAlcohol. Clin. Exp. Res. 2001;25:415–420. [PubMed] [Google Scholar]

110. Hamid A, Wani NA, Rana S, Vaiphei K, Mahmood A, Kaur J. Down-regulation of reduced folate carrier may result in folate malabsorption across intestinal brush border membrane during experimental alcoholism. FEBS J. 2007;274:6317–6328. [PubMed] [Google Scholar]

111. Said HM, Mee L, Sekar VT, Ashokkumar B, Pandol SJ. Mechanism and regulation of folate uptake by pancreatic acinar cells: effect of chronic alcohol consumption. Am. J. Physiol. Gastrointest. Liver Physiol. 2010;298:G985–G993. [PMC free article] [PubMed] [Google Scholar]

112. Halsted CH, Reisenauer AM, Romero JJ, Cantor DS, Ruebner B. Jejunal perfusion of simple and conjugated folates in celiac sprue. J. Clin. Invest. 1977;59:933–940. [PMC free article] [PubMed] [Google Scholar]

113. Halsted CH, Reisenauer AM, Shane B, Tamura T. Availability of monoglutamyl and polglutamyl folates in normal subjects and in patients with celiac sprue. Gut. 1978;19:886–891. [PMC free article] [PubMed] [Google Scholar]

114. Franklin JL, Rosenberg IH. Impaired folic acid absorption in inflammatory bowel disease: effects of salicylazosulfapyridine (azulfidine). Gastroenterology. 1973;64:517–525. [PubMed] [Google Scholar]

115. Halsted CH, Gandhi G, Tamura T. Folate levels inflammatory bowel disease. N. Engl. J. Med. 1982;306:1488. [Google Scholar]

116. Urquhart BL, Gregor JC, Chande N, Knauer MJ, Tirona RG, Kim RB. The human proton-coupled folate transporter (hPCFT): modulation of intestinal expression and function by drugs. Am. J. Physiol. Gastrointest. Liver Physiol. 2010;298:G248–G254. [PubMed] [Google Scholar]

117. Inoue K, Nakai Y, Ueda S, Kamigaso S, Ohta KY, Hatakeyama M, Hayashi Y, Otagiri M, Yuasa H. Functional characterization of PCFT/HCP1 as the molecular entity of the carrier-mediated intestinal folate transport system in the rat model. Am. J. Physiol. Gastrointest. Liver Physiol. 2008;294:G660–G668. [PubMed] [Google Scholar]

118. Jansen G, Van der Heijden J, Oerlemans R, Lems WF, Ifergan I, Scheper RJ, Assaraf YG, Dijkmans BA. Sulfasalazine is a potent inhibitor of the reduced folate carrier: implications for combination therapies with methotrexate in rheumatoid arthritis. Arthritis Rheum. 2004;50:2130–2139. [PubMed] [Google Scholar]

119. Fox KR, Adrian C, Hogben M. Nicotinic acidactive transport by in vitro bullfrog small intestine. Biochim. Biophys. Acta. 1974;332:336–340. [Google Scholar]

120. Sadoogh-Abasian F, Evered DF. Absorption of nicotinic acid and nicotinamide from rat small intestine in vitro. Biochim. Biophys. Acta. 1980;598:385–391. [PubMed] [Google Scholar]

121. Simanjuntak MT, Tamai I, Terasaki T, Tsuji A. Carrier-mediated uptake of nicotinic acid by rat intestinal brush-border membrane vesicles and relation to monocarboxylic acid transport. J. Pharmacobiodyn. 1990;13:301–309. [PubMed] [Google Scholar]

122. Takanaga H, Maeda H, Yabuuchi H, Tamai I, Higashida H, Tsuji A. Nicotinic acid transport mediated by pH-dependent anion antiporter and proton cotransporter in rabbit intestinal brush-border membrane. J. Pharm. Pharmacol. 1996;48:1073–1077. [PubMed] [Google Scholar]

123. Guilarte TR, Pravlik K. Radiometric-microbiologic assay of niacin using Kloeckera brevis: analysis of human blood and food. J. Nutr. 1983;113:2587–2594. [PubMed] [Google Scholar]

124. Nabokina SM, Kashyap ML, Said HM. Mechanism and regulation of human intestinal niacin uptake. Am. J. Physiol. Cell Physiol. 2005;289:C97–C103. [PubMed] [Google Scholar]

125. Said HM, Nabokina SM, Balamurugan K, Hohammed ZM, Urbina C, Kashyap ML. Mechanism of nicotinic acid transport in human liver cells: experiments with HepG2 cells and primary hepatocytes. Am. J. Physiol. Cell Physiol. 2007;293:C1773–C1778. [PubMed] [Google Scholar]

126. Bahn A, Hagos Y, Reuter S, Balen D, Brzica H, Krick W, Burckhardt BC, Sabolic I, Burckhardt G. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J. Biol. Chem. 2008;283:16332–16341. [PubMed] [Google Scholar]

127. Gopal E, Fei YJ, Miyauchi S, Zhuang L, Prasad PD, Ganapathy V. Sodium-coupled and electrogenic transport of B-complex vitamin nicotinic acid by slc5a8, a member of the Na/glucose co-transporter gene family. Biochem. J. 2005;388:309–316. [PMC free article] [PubMed] [Google Scholar]

128. Gopal E, Miyauchi S, Martin PM, Ananth S, Roon P, Smith SB, Ganapathy V. Transport of nicotinate and structurally related compounds by human SMCT1(SLC5A8) and its relevance to drug transport in the mammalian intestinal tract. Pharm. Res. 2007;24:575–584. [PubMed] [Google Scholar]

129. Shibata K, Gross CJ, Henderson LM. Hydrolysis and absorption of pantothenate and its coenzymes in the rat small intestine. J. Nutr. 1983;113:2107–2115. [PubMed] [Google Scholar]

130. Gospe SM. Pyridoxine-dependent seizures: finding from recent studies pose new questions. Pediatr. Neurol. 2002;26:181–185. [PubMed] [Google Scholar]

131. Linkswiler H, Baumann CA, Snell EE. Effect of aureomycin on the response of rats to various forms of vitamin B6. J. Nutr. 1951;43:565–573. [PubMed] [Google Scholar]

132. Hamm MW, Hehansho H, Henderson LM. Transport and metabolism of pyridoxamine and pyridoxamine phosphate in the small intestine. J. Nutr. 1979;109:1552–1559. [PubMed] [Google Scholar]

133. Middleton HM. Intestinal absorption of pyridoxal-5′ phosphate disappearance from perfused segments of rat jejunum in vivo. J. Nutr. 1979;109:975–981. [PubMed] [Google Scholar]

134. Middleton HM. Uptake of pyridoxine by in vivo perfused segments of rat small intestine: a possible role for intracellular vitamin metabolism. J. Nutr. 1985;115:1079–1088. [PubMed] [Google Scholar]

135. Yoshida S, Hayashi K, Kawasaki T. Pyridoxine transport in brush border membrane vesicles of guinea pig jejunum. J. Nutr. Sci. Vitaminol. 1981;27:311–317. [PubMed] [Google Scholar]

136. Said HM, Ortiz A, Ma TY. A carrier-mediated mechanism for pyridoxine uptake by human intestinal epithelial Caco-2 cells: regulation by a PKA-mediated pathway. Am. J. Physiol. Cell Physiol. 2003;285:C1219–C1225. [PubMed] [Google Scholar]

137. Said ZM, Subramanian VS, Vaziri ND, Said HM. Pyridoxine uptake by colonocytes: a specific and regulated carrier-mediated process. Am. J. Physiol. Cell Physiol. 2008;294:C1192–C1197. [PubMed] [Google Scholar]

138. Wang L-D, Zhou F-Y, Li X-M, Sun L-D, Song X, Jin Y, Li J-M, Kong G-Q, Qi H, Cui J, et al. Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54. Nat. Genet. 2010;42:759–763. [PubMed] [Google Scholar]

139. Kasper H. Vitamin absorption in the colon. Am. J. Proctol. 1970;21:341–345. [PubMed] [Google Scholar]

140. Daniel H, Binninger E, Rehner G. Hydrolysis of FMN and FAD by alkaline phosphatase of the intestinal brush border membrane. Int. J. Vitam. Nutr. Res. 1983;53:109–114. [PubMed] [Google Scholar]

141. Iinuma S. Synthesis of riboflavin by intestinal bacteria. J. Vitam. 1995;2:6–13. [PubMed] [Google Scholar]

142. Ocese O, Pearson PB, Schwiegert BS. The synthesis of certain B vitamins by the rabbit. J. Nutr. 1948;35:577–590. [PubMed] [Google Scholar]

143. Yonezawa A, Masuda S, Katsura T, Inui K. Identification and functional characterization of a novel human and rat riboflavin transporter, RFT1. Am. J. Physiol. Cell Physiol. 2008;295:C632–C641. [PubMed] [Google Scholar]

144. Yamamoto S, Inoue K, Ohta K, Fukatsu R, Maeda J, Yoshida Y, Yuasa H. Identification and functional characterization of rat riboflavin transporter 2. J. Biochem. 2009;145:437–443. [PubMed] [Google Scholar]

145. Said HM, Ma TY. Mechanism of riboflavin uptake by Caco-2 human intestinal epithelial cells. Am. J. Physiol. 1994;266:G15–G21. [PubMed] [Google Scholar]

146. Said HM, Ortiz A, Moyer MP, Yanagawa N. Riboflavin uptake by human-derived colonic epithelial NCM460 cells. Am. J. Physiol. Cell Physiol. 2000;278:C270–C276. [PubMed] [Google Scholar]

147. Yao Y, Yonezawa A, Yoshimatsu H, Masuda S, Katsura T, Inui K-I. Identification and comparative functional characterization of a new human riboflavin transporter hRFT3 expressed in the brain. J. Nutr. 2010;140:1220–1226. [PubMed] [Google Scholar]

148. Green P, Wiseman M, Crow YJ, Houlden H, Riphagen S, Lin J-P, Raymon FL, Childs A-M, Sheridan E, Edwards S, Josifova DJ. Brown–Vialetto–Van Laere syndrome, a ponto-bulbar palsy with deafness, is caused by mutations in C20orf54. Am. J. Hum. Genet. 2010;86:485–489. [PMC free article] [PubMed] [Google Scholar]

149. Johnson JO, Gibbs JR, Maldergem LV, Houlden H, Singleton AB. Exome sequencing in Brown–Vialetto–Van Laere syndrome. Am. J. Hum. Genet. 2010;87:567–570. [PMC free article] [PubMed] [Google Scholar]

150. Bosch AM, Abeling NGGM, IJ1st L, Knoester H, Van der Pol WL, Stroomer AEM, Wanders RJ, Visser G, Wijburg FA, Duran M, Waterham HR. Brown–Vialetto–Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment. J. Inherit. Metab. Dis. 2011;34:159–164. [PMC free article] [PubMed] [Google Scholar]

151. Said HM, Khani R. Uptake of riboflavin across the brush border membrane of rat intestine: regulation by dietary vitamin levels. Gastroenterology. 1993;105:1294–1298. [PubMed] [Google Scholar]

152. Said HM, Ghishan FK, Greene HL, Hollander D. Developmental maturation of riboflavin intestinal transport in the rat. Pediatr. Res. 1985;19:1175–1178. [PubMed] [Google Scholar]

153. Said HM, Ma TY, Grant K. Regulation of riboflavin intestinal uptake by protein kinase A: studies with Caco-2 cells. Am. J. Physiol. 1994;267:G955–G959. [PubMed] [Google Scholar]

154. Yanagawa N, Shih RN, Jo OD, Said HM. Riboflavin transport by isolated perfused rabbit renal proximal tubules. Am. J. Physiol. Cell Physiol. 2000;279:C1782–C1786. [PubMed] [Google Scholar]

155. Said HM. In: Thiamin. In Encyclopedia of Dietary Supplements. Coats PM, Betz JM, Blackman MR, Cragg GM, Levine M, Moss J, White JD, editors. Informa HealthCare; New York: 2010. pp. 752–757. [Google Scholar]

156. Tallaksen CME, Bohmer T, Bell H. Blood and serum thiamin and thiamin phosphate esters concentrations in patients with alcohol dependence syndrome before and after thiamin treatment. Alcohol. Clin. Exp. Res. 1992;16:320–325. [PubMed] [Google Scholar]

157. Leevy CM, Baker H. Vitamins and alcoholism. Am. J. Clin. Nutr. 1968;21:1325–1328. [PubMed] [Google Scholar]

158. Tallaksen CM, Bell H, Bohmer T. Thiamin and thiamin phosphate ester deficiency assessed by high performance liquid chromatography in four clinical cases of Werincke encephalopathy. Alcohol. Clin. Exp. Res. 1993;17:712–716. [PubMed] [Google Scholar]

159. Saito N, Kimura M, Kuchiba A, Itokawa Y. Blood thiamin levels in outpatients with diabetes mellitus. J. Nutr. Sci. Vitaminol. 1987;33:421–430. [PubMed] [Google Scholar]

160. Thomson AD. The absorption of sulfur-labeled thiamin hydrochloride in control subjects and in patients with intestinal malabsorption. Clin. Sci. 1966;31:167–179. [PubMed] [Google Scholar]

161. Seligmann H, Halkin H, Rauchfleisch S, Kaufmann N, Motro M, Vered Z, Ezra D. Thiamine deficiency in patients with congestive heart failure receiving long-term furosemide therapy: a pilot study. Am. J. Med. 1991;91:151–155. [PubMed] [Google Scholar]

162. Diaz GA, Banikazemai M, Oishi K, Desnick RJ, Gelb BD. Mutations in a new gene encoding a thiamin transporter cause thiamin-responsive megaloblastic anaemia syndrome. Nat. Genet. 1999;22:309–312. [PubMed] [Google Scholar]

163. Labay V, Raz T, Baron D, Mandel H, Williams H, Barrett T, Szargel R, McDonald L, Shalata A, Nosaka K, et al. Mutations in SLC19A2 cause thiamin-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat. Genet. 1999;22:300–304. [PubMed] [Google Scholar]

164. Fleming JC, Tartaglini E, Steinkamp MP, Schorderet DF, Cohen N, Neufeld EJ. The gene mutated in thiamine-response anaemia with diabetes and deafness (TRMA) encodes a functional thiamine transporter. Nat. Genet. 1999;22:305–308. [PubMed] [Google Scholar]

165. Mandel H, Berant M, Hazani A, Naveh Y. Thiamine-dependent beriberi in the thiamine-responsive anemia syndrome. N. Engl. J. Med. 1984;311:836–838. [PubMed] [Google Scholar]

166. Rindi G, Patrini C, Laforenza U, Mandel H, Berant M, Viana MB, Poggi V, Zarra AN. Further studies on erythocyte thiamin transport and phosphorylation in seven patients with thiamin-responsive megaloblastic anaemia. J. Inherit. Metab. Dis. 1994;17:667–677. [PubMed] [Google Scholar]

167. Kono S, Miyajima H, Yoshida K, Togawa A, Shirakawa K, Suzuki H. Mutations in a thiamine-transporter gene and Wernicke's-like encephalopathy. N. Engl. J. Med. 2009;360:1792–1794. [PubMed] [Google Scholar]

168. Sklan D, Trostler N. Site and extend of thiamin absorption in the rat. J. Nutr. 1977;107:353–356. [PubMed] [Google Scholar]

169. Guerrant NB, Dutcher RA. The assay of vitamins B and G as influenced by coprophagy. J. Biol. Chem. 1932;98:225–235. [Google Scholar]

170. Guerrant NB, Dutcher RA, Brown RA. Further studies concerning formation of B vitamins in digestive tract of rat. J. Nutr. 1937;13:305–315. [Google Scholar]

171. Najjar VA, Holt LE. The biosynthesis of thiamin in man and its implication in human nutrition. JAMA, J. Am. Med. Assoc. 1943;123:683–684. [Google Scholar]

172. Rindi G, Laforenza U. Thiamin intestinal transport and related issues: recent aspects. Proc. Soc. Exp. Biol. Med. 2000;224:246–255. [PubMed] [Google Scholar]

173. Dudeja PK, Tyagi S, Kavilaveettil RJ, Gill R, Said HM. Mechanism of thiamin uptake by human jejunal brush-border membrane vesicles. Am. J. Physiol. Cell Physiol. 2001;281:C786–C792. [PubMed] [Google Scholar]

174. Dudeja PK, Tyagi S, Gill R, Said HM. Evidence for carrier-mediated mechanism for thiamin transport to human jejunal basolateral membrane vesicles. Digest. Dis. Sci. 2003;48:109–115. [PubMed] [Google Scholar]

175. Rajgopal A, Edmondson A, Goldman D, Zhao R. SLC19A3 encodes a second thiamin transporter ThTr2. Biochim. Biophys. Acta. 2001;1537:175–178. [PubMed] [Google Scholar]

176. Eudy JD, Spiegelstein O, Baber RC, Wlodarczyk BJ, Talbot J, Finnell RH. Identification and characterization of the human and mouse SLC19A3 gene: a novel member of the reduced folate family of micronutrient transporter genes. Mol. Gen. Metabol. 2000;71:581–590. [PubMed] [Google Scholar]

177. Subramanian VS, Marchant JS, Parker I, Said HM. Cell biology of the human thiamin transporter-1 (hTHTR1): intracellular trafficking and membrane targeting mechanisms. J. Biol. Chem. 2003;278:3976–3984. [PubMed] [Google Scholar]

178. Said HM, Balamurugan K, Subramanian VS, Marchant JS. Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2003;286:G491–G498. [PubMed] [Google Scholar]

179. Reidling JC, Lambrecht N, Kassir M, Said HM. Impaired intestinal vitamin B1 (thiamin) uptake in thiamin transporter-2-deficient mice. Gastroenterology. 2010;138:1802–1809. [PMC free article] [PubMed] [Google Scholar]

180. Neufeld EJ, Fleming JC, Tyartaglini E, Steinkamp MP. Thiamine-responsive megaloblastic anemia syndrome: a disorder of high-affinity thiamine transport. Blood Cells Mol. Dis. 2001;27:135–138. [PubMed] [Google Scholar]

181. Lagarde WH, Underwood LE, Moats-Staats BM, Calikoglu AS. Novel mutation in the SLC19A2 gene in an African-American female with thiamine-responsive megaloblastic anemia syndrome. Am. J. Med. Genet. A. 2004;125A:299–305. [PubMed] [Google Scholar]

182. Subramanian VS, Marchant JS, Said HM. Targeting and intracellular trafficking of clinically relevant hTHTR1 mutations in human cell lines. Clin. Sci. 2007;113:93–102. [PubMed] [Google Scholar]

183. Balamurugan K, Said HM. Functional role of specific amino acid residues in human thiamin transporter SLC19A2: mutational analysis. Am. J. Physiol. Gastrointest Liver Physiol. 2002;283:G37–G43. [PubMed] [Google Scholar]

184. Zeng WQ, Al-Yamani E, Acierno JS, Jr., Slaugenhaupt S, Gillis T, MacDonald ME, Ozand PT, Gusella JF. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am. J. Hum. Genet. 2005;77:16–26. [PMC free article] [PubMed] [Google Scholar]

185. Subramanian VS, Marchant JS, Said HM. Biotin-responsive basal ganglia disease-linked mutations inhibit thiamine transport via hTHTR2: biotin is not a substrate for hTHTR2. Am. J. Physiol. Cell Physiol. 2006;291:C851–C859. [PubMed] [Google Scholar]

186. Subramanian VS, Marchant JS, Said HM. Targeting and trafficking of the human thiamine transporter-2 in epithelial cells. J. Biol. Chem. 2006;281:5233–5245. [PubMed] [Google Scholar]

187. Reidling JC, Subramanian VS, Dudeja PK, Said HM. Expression and promoter analysis of SLC19A2 in the human intestine. Biochim. Biophys. Acta. 2002;1561:180–187. [PubMed] [Google Scholar]

188. Reidling JC, Said HM. In vitro and in vivo characterization of the minimal promoter region of the human thiamin transporter SLC19A2. Am. J. Physiol. Cell Physiol. 2003;285:C633–C641. [PubMed] [Google Scholar]

189. Nabokina S, Said HM. Characterization of the 5′ -regulatory region of the human thiamin transporter SLC19A3: in vitro and in vivo studies. Am. J. Physiol. Gastrointest. Liver Physiol. 2004;287:G822–G829. [PubMed] [Google Scholar]

190. Laforenza U, Patrini C, Alvisi C, Faelli A, Licandro A, Rindi G. Thiamin uptake in human intestinal biopsy specimens, including observations from a patient with acute thiamin deficiency. Am. J. Clin. Nutr. 1997;66:320–326. [PubMed] [Google Scholar]

191. Reidling JC, Said HM. Adaptive regulation of intestinal thiamin uptake: molecular mechanism using wild-type and transgenic mice carrying hTHTR-1 and -2 promoters. Am. J. Physiol. Gastrointest. Liver Physiol. 2005;288:G1127–G1134. [PubMed] [Google Scholar]

192. Reidling JC, Nabokina SM, Balamurugan K, Said HM. Developmental maturation of intestinal and renal thiamin uptake: studies in wild-type and transgenic mice carrying human THTR-1 and 2 promoters. J. Cell. Physiol. 2006;206:371–377. [PubMed] [Google Scholar]

193. Nabokina SM, Reidling JC, Said HM. Differentiation-dependent up-regulation of intestinal thiamin uptake: cellular and molecular mechanisms. J. Biol. Chem. 2005;280:32676–32682. [PubMed] [Google Scholar]

194. Said HM, Ortiz A, Kumar CK, Chatterjee N, Dudeja PK, Rubin SA. Transport of thiamin in the human intestine: mechanism and regulation in intestinal epithelial cell model Caco-2. Am. J. Physiol. 1999;277:C645–C651. [PubMed] [Google Scholar]

195. Said HM, Ortiz A, Subramanian VS, Neufeld EJ, Moyer MP, Dudeja PK. Mechanism of thiamin uptake by human colonocytes: studies with cultured colonic epithelial cell line NCM460. Am. J. Physiol. Gastrointest. Liver Physiol. 2001;281:G144–G150. [PubMed] [Google Scholar]

196. Ashokkumar B, Vaziri ND, Said HM. Thiamin uptake by the human-derived renal epithelial (HEK-293) cells: cellular and molecular mechanisms. Am. J. Physiol. Renal Physiol. 2006;291:F796–F805. [PubMed] [Google Scholar]

197. Subramanian VS, Mohammed ZM, Molina A, Marchant JS, Vaziri ND, Said HM. Vitamin B1 (thiamine) uptake by human retinal pigment epithelial (ARPE-19) cells: mechanism and regulation. J. Physiol. 2007;582:73–85. [PMC free article] [PubMed] [Google Scholar]

198. Mee L, Nabokina SM, Sekar VT, Subramanian VS, Maedler K, Said HM. Pancreatic beta cells and islets take up thiamin by a regulated carrier-mediated process: studies using mice and human pancreatic preparations. Am. J. Physiol. Gastrointest. Liver Physiol. 2009;297:G197–G206. [PMC free article] [PubMed] [Google Scholar]

199. Hoyumpa AM., Jr Mechanisms of thiamin deficiency in chronic alcoholism. Am. J. Clin. Nutr. 1980;33:2750–2761. [PubMed] [Google Scholar]

200. Gastaldi G, Casirola D, Ferrari G, Rindi G. Effect of chronic ethanol administration on thiamin transport in microvillous vesicles of rat small intestine. Alcohol Alcohol. 1989;24:83–89. [PubMed] [Google Scholar]

201. Subramanya SB, Subramanian VS, Said HM. Chronic alcohol consumption and intestinal absorption: effects on physiological and molecular parameters of the uptake process. Am. J. Physiol. Gastrointest. Liver Physiol. 2010;299:G23–G31. [PMC free article] [PubMed] [Google Scholar]

202. Subramanian VS, Subramanya SB, Tsukamoto H, Said HM. Effect of chronic alcohol feeding on physiological and molecular parameters of renal thiamin transport. Am. J. Physiol. Renal Physiol. 2010;299:F28–F34. [PMC free article] [PubMed] [Google Scholar]

203. Ashokkumar B, Kumar JS, Hecht GA, Said HM. Enteropathogenic Escherichia coli inhibits intestinal vitamin B1 (thiamin) uptake: studies with human-derived intestinal epithelial Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2009;297:G825–G833. [PMC free article] [PubMed] [Google Scholar]

204. Bukhari FJ, Moradi H, Gollapudi P, Kim HJ, Vaziri ND, Said HM. Effect of chronic kidney disease on the expression of thiamin and folic acid transporters. Nephrol. Dial. Transplant. 2010;26:2137–2144. [PMC free article] [PubMed] [Google Scholar]


Page 2

What is the primary excretory route for water-soluble vitamins A bile b kidney c intestine D perspiration?

Schematic depiction of the membrane expression of well-characterized water-soluble vitamin transporters in polarized intestinal epithelial cells

  • What is the primary excretory route for water-soluble vitamins A bile b kidney c intestine D perspiration?
  • What is the primary excretory route for water-soluble vitamins A bile b kidney c intestine D perspiration?
  • What is the primary excretory route for water-soluble vitamins A bile b kidney c intestine D perspiration?
  • What is the primary excretory route for water-soluble vitamins A bile b kidney c intestine D perspiration?
  • What is the primary excretory route for water-soluble vitamins A bile b kidney c intestine D perspiration?

Click on the image to see a larger version.