What likely hazard would an extratropical cyclone bring to the northeast united states in january?

1. Ng A.K., Zhang H., Afenyo M., Becker A., Cahoon S., Chen S.-L., Esteban M., Ferrari C., Lau Y.-Y., Lee P.T.-W. Port decision maker perceptions on the effectiveness of climate adaptation actions. Coast. Manag. 2018;46:148–175. doi: 10.1080/08920753.2018.1451731. [CrossRef] [Google Scholar]

2. Vincent L.A., Zhang X., Mekis E., Wan H., Bush E.J. Changes in Canada’s climate: Trends in indices based on daily temperature and precipitation data. Atmosphere-Ocean. 2018;56:332–349. doi: 10.1080/07055900.2018.1514579. [CrossRef] [Google Scholar]

3. Nursey-Bray M., Palmer R., Smith T.F., Rist P. Old ways for new days: Australian indigenous peoples and climate change. Local Environ. 2019;24:473–486. doi: 10.1080/13549839.2019.1590325. [CrossRef] [Google Scholar]

4. Pan Y., Opgenhaffen M., Van Gorp B. China’s pathway to climate sustainability: A diachronic framing analysis of people’s daily’s coverage of climate change (1995–2018) Environ. Commun. 2021;15:189–202. doi: 10.1080/17524032.2020.1817766. [CrossRef] [Google Scholar]

5. Yang Z., Ng A.K., Lee P.T.-W., Wang T., Qu Z., Rodrigues V.S., Pettit S., Harris I., Zhang D., Lau Y.-Y. Risk and cost evaluation of port adaptation measures to climate change impacts. Transp. Res. Part D Transp. Environ. 2018;61:444–458. doi: 10.1016/j.trd.2017.03.004. [CrossRef] [Google Scholar]

6. Birkmann J., Garschagen M., Kraas F., Quang N. Adaptive urban governance: New challenges for the second generation of urban adaptation strategies to climate change. Sustain. Sci. 2010;5:185–206. doi: 10.1007/s11625-010-0111-3. [CrossRef] [Google Scholar]

7. Shu-Dong W., Juan-Juan L., Bin W. A new typhoon bogus data assimilation and its sampling method: A case study. Atmos. Ocean. Sci. Lett. 2011;4:276–280. doi: 10.1080/16742834.2011.11446942. [CrossRef] [Google Scholar]

8. NOAA What Is the Difference between a Hurricane and a Typhoon? [(accessed on 28 May 2021)]; Available online: https://oceanservice.noaa.gov/facts/cyclone.html

9. Panahi R., Ng A.K., Pang J. Climate change adaptation in the port industry: A complex of lingering research gaps and uncertainties. Transp. Policy. 2020;95:10–29. doi: 10.1016/j.tranpol.2020.05.010. [CrossRef] [Google Scholar]

10. Yu Y.-C., Jou B.J.-D., Hsu H.-H., Cheng C.-T., Chen Y.-M., Lee T.-J. Typhoon Morakot meteorological analyses. J. Chin. Inst. Eng. 2014;37:595–610. doi: 10.1080/02533839.2012.736778. [CrossRef] [Google Scholar]

11. Eisenack K., Stecker R., Reckien D., Hoffmann E. Adaptation to climate change in the transport sector: A review of actions and actors. Mitig. Adapt. Strateg. Glob. Change. 2012;17:451–469. doi: 10.1007/s11027-011-9336-4. [CrossRef] [Google Scholar]

12. Jiang Y., Yuan Y. Emergency logisitcs in a large-scale disaster context: Acheivements and challenges. Int. J. Envrion. Res. Public Health. 2019;16:779. doi: 10.3390/ijerph16050779. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Wu L., Wang B., Geng S. Growing typhoon influence on East Asia. Geophys. Res. Lett. 2005;32 doi: 10.1029/2005GL022937. [CrossRef] [Google Scholar]

14. Yang J., Li L., Zhao K., Wang P., Wang D., Sou I.M., Yang Z., Hu J., Tang X., Mok K.M. A comparative study of Typhoon Hato (2017) and Typhoon Mangkhut (2018)—Their impacts on coastal inundation in Macau. J. Geophys. Res. Ocean. 2019;124:9590–9619. doi: 10.1029/2019JC015249. [CrossRef] [Google Scholar]

15. Wendy L. Impacts of Mangkhut on Traffic and Transport in Hong Kong. [(accessed on 1 May 2021)]; Available online: https://www.hko.gov.hk/en/research_forum/files/RF2019_TD.pdf

16. Hong Kong Observatory. [(accessed on 26 June 2021)]; Available online: https://www.hko.gov.hk/en/index.html

17. Intergovernmental Panel on Climate Change . The Intergovernmental Panel on Climate Change A6 Report. United Nations; New York, NY, USA: 2021. [Google Scholar]

18. Walsh K., Camargo S., Knutson T.R., Kossin J., Lee T.C., Murakami H., Patricola C. Ninth International Workshop on Tropical Cyclones Preconference Report. WMO; Honolulu, HI, USA: 2018. Climate Change. [Google Scholar]

19. Camargo S.J., Wing A.A. Tropical cyclones in climate models. Wiley Interdiscip. Rev. Clim. Chang. 2016;7:211–237. doi: 10.1002/wcc.373. [CrossRef] [Google Scholar]

20. Wuebbles D.J., Fahey D.W., Hibbard K.A., Arnold J.R., DeAngelo B., Doherty S., Easterling D.R., Edmonds J., Edmonds T., Hall T. Climate Science Special Report: Fourth National Climate Assessment (NCA4), Volume I. U.S. Global Change Research Program; Washington, DC, USA: 2017. [Google Scholar]

21. Knutson T., Camargo S.J., Chan J.C., Emanuel K., Ho C.-H., Kossin J., Mohapatra M., Satoh M., Sugi M., Walsh K. Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bull. Am. Meteorol. Soc. 2020;101:E303–E322. doi: 10.1175/BAMS-D-18-0194.1. [CrossRef] [Google Scholar]

22. Irish J.L., Resio D.T., Ratcliff J.J. The influence of storm size on hurricane surge. J. Phys. Oceanogr. 2008;38:2003–2013. doi: 10.1175/2008JPO3727.1. [CrossRef] [Google Scholar]

23. Olbert A.I., Comer J., Nash S., Hartnett M. High-resolution multi-scale modelling of coastal flooding due to tides, storm surges and rivers inflows. A Cork City example. Coast. Eng. 2017;121:278–296. doi: 10.1016/j.coastaleng.2016.12.006. [CrossRef] [Google Scholar]

24. Thomas A., Dietrich J., Asher T., Bell M., Blanton B., Copeland J., Cox A., Dawson C., Fleming J., Luettich R. Influence of storm timing and forward speed on tides and storm surge during Hurricane Matthew. Ocean. Model. 2019;137:1–19. doi: 10.1016/j.ocemod.2019.03.004. [CrossRef] [Google Scholar]

25. Yin J., Lin N., Yu D. Coupled modeling of storm surge and coastal inundation: A case study in New York City during Hurricane Sandy. Water Resour. Res. 2016;52:8685–8699. doi: 10.1002/2016WR019102. [CrossRef] [Google Scholar]

26. Wang J., Gao W., Xu S., Yu L. Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China. Clim. Chang. 2012;115:537–558. doi: 10.1007/s10584-012-0468-7. [CrossRef] [Google Scholar]

27. Handmer J., Iveson H. Cyclone Pam in Vanuatu: Learning from the low death toll. Aust. J. Emerg. Manag. 2017;32:60–65. [Google Scholar]

28. Schmidlin T.W. Human fatalities from wind-related tree failures in the United States, 1995–2007. Nat. Hazards. 2009;50:13–25. doi: 10.1007/s11069-008-9314-7. [CrossRef] [Google Scholar]

29. Das S. The role of natural ecosystems and socio-economic factors in the vulnerability of coastal villages to cyclone and storm surge. Nat. Hazards. 2012;64:531–546. doi: 10.1007/s11069-012-0255-9. [CrossRef] [Google Scholar]

30. Peduzzi P., Chatenoux B., Dao H., De Bono A., Herold C., Kossin J., Mouton F., Nordbeck O. Global trends in tropical cyclone risk. Nat. Clim. Chang. 2012;2:289–294. doi: 10.1038/nclimate1410. [CrossRef] [Google Scholar]

31. Alam E., Dominey-Howes D. A new catalogue of tropical cyclones of the northern Bay of Bengal and the distribution and effects of selected landfalling events in Bangladesh. Int. J. Climatol. 2015;35:801–835. doi: 10.1002/joc.4035. [CrossRef] [Google Scholar]

32. Chan J.C. Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Clim. 2000;13:2960–2972. doi: 10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2. [CrossRef] [Google Scholar]

33. Wang B., Chan J.C. How strong ENSO events affect tropical storm activity over the western North Pacific. J. Clim. 2002;15:1643–1658. doi: 10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2. [CrossRef] [Google Scholar]

34. Thomas A.S., Kopczak L.R. From logistics to supply chain management: The path forward in the humanitarian sector. Fritz Inst. 2005;15:1–15. [Google Scholar]

35. Hrydziushka D., Pasha U., Hoff A. An Extended Model for Disaster Relief Operations Used on the Hagibis Typhoon Case in Japan. Logistics. 2021;5:39. doi: 10.3390/logistics5020039. [CrossRef] [Google Scholar]

36. de Moura E.H., e Cruz T.B.R., Chiroli D.M.D.G. A framework proposal to integrate humanitarian logistics practices, disaster management and disaster mutual assistance: A Brazilian case. Saf. Sci. 2020;132:104965. doi: 10.1016/j.ssci.2020.104965. [CrossRef] [Google Scholar]

37. Lau Y.Y., Zhang J., Ng A.K., Roozbeh P. Implications of a Pandemic Outbreak Risk: A Discussion on China’s Emergency Logistics in the Era of Coronavirus Disease 2019 (COVID-19) J. Int. Logist. Trade. 2020;18:127–135. doi: 10.24006/jilt.2020.18.3.127. [CrossRef] [Google Scholar]

38. Cha E.J., Knutson T.R., Lee T.C., Ying M., Nakaegawa T. Third assessment on impacts of climate change on tropical cyclones in the typhoon committee region—Part II: Future projects. Trop. Cyclone Res. Rev. 2020;9:75–86. doi: 10.1016/j.tcrr.2020.04.005. [CrossRef] [Google Scholar]

39. Chen J., Tam C.Y., Cheung K., Wang Z., Murakami H., Lau N.C., Garner S.T., Xiao Z., Choy C.W., Wang P. Changing impacts of tropical cyclones on east and southeast Asian inland regions in the past and a globally warmed future climate. Front. Earth Sci. 2021;9:769005. doi: 10.3389/feart.2021.769005. [CrossRef] [Google Scholar]

40. Scarpin M.R.S., de Oliveira Silva R. Humanitarian logistics: Empirical evidences from a natural disaster. Procedia Eng. 2014;78:102–111. doi: 10.1016/j.proeng.2014.07.045. [CrossRef] [Google Scholar]

41. Patton M.Q. Qualitative Evaluation and Research Methods. Sage Publications; Newbury Park, CA, USA: 1990. [Google Scholar]

42. Fletcher M., Zhao Y., Plakoyiannaki E., Buck T. Three pathways to case selection in international business: A twenty-year review, analysis and synthesis. Int. Bus. Rev. 2018;27:755–766. doi: 10.1016/j.ibusrev.2017.12.004. [CrossRef] [Google Scholar]

43. Jarrell J.D., Mayfield M., Rappaport E.N., Landsea C.L. The Deadliest, Costliest, and Most Intense United States Hurricanes From 1900 to 2000. National Oceanic and Atmospheric Administration; Washington, DC, USA: 2001. NOAA Technical Memorandum NWS TPC-3. [Google Scholar]

44. Phillips L. Costliest Hurricanes Since the Year 2000. [(accessed on 3 January 2022)]. Available online: https://news.yahoo.com/15-costliest-hurricanes-since-2000-211201226.html

45. Blake E.S., Rappaport E.N., Landsea C.W., Miami N.H.C. The Deadliest, Costliest, and Most Intense United States Tropical Cyclones from 1851 to 2006. National Oceanic and Atmospheric Administration; Washington, DC, USA: 2007. NOAA Technical Memorandum NWS TPC-5. [Google Scholar]

46. Frohlich T. From Elena to Katrina: These Are the Costliest Hurricanes to Ever Hit the US. [(accessed on 28 May 2021)]. Available online: https://www.usatoday.com/story/money/2018/09/12/most-destructive-hurricanes-of-all-time/36697269/

47. National Hurricane Center . Tropical Cyclone Report: Hurricane Ivan. National Hurricane Center; Miami, FL, USA: 2004. [Google Scholar]

48. National Hurricane Center . Tropical Cyclone Report: Hurricane Wilma. National Hurricane Center; Miami, FL, USA: 2005. [Google Scholar]

49. National Hurricane Center . Tropical Cyclone Report: Hurricane Irma. National Hurricane Center; Miami, FL, USA: 2017. [Google Scholar]

50. National Hurricane Center . Tropical Cyclone Report: Hurricane Florence. National Hurricane Center; Miami, FL, USA: 2018. [Google Scholar]

51. National Aeronautics and Space Administration (NASA) Hurricane Sandy. National Aeronautics and Space Administration (NASA); Washington, DC, USA: 2013. [Google Scholar]

52. FEMA Disaster Declarations by Year. [(accessed on 28 May 2021)]. Available online: https://www.adt.com/natural-disasters/declaration-analysis

53. Sainsbury E.M., Schiemann R.K.H., Hodges K.I., Shaffrey L.C., Baker A.J., Bhatia K.T. How important are post-tropical cyclones for European windstrom risk? Geophys. Res. Lett. 2020;47:e2020GL089853. doi: 10.1029/2020GL089853. [CrossRef] [Google Scholar]

54. Lupo A. Recent Hurricane Research: Climate, Dynamics, and Societal Impacts. IntechOpen; London, UK: 2011. [Google Scholar]

55. Roberts J.F., Champion A.J., Dawkins L.C., Hodges K.I., Shaffrey L.C., Stephenson D.B., Stringer M.A., Thornton H.E., Youngman B.D. The XWS open access catalogue of extreme European windstroms from 1979 to 2012. Nat. Hazards Earth Syst. Sci. 2014;14:2487–2501. doi: 10.5194/nhess-14-2487-2014. [CrossRef] [Google Scholar]

56. Dawkins L.C., Stephenson D.B., Lockwood J.F., Maisey P.E. The 21st century decline in damaging European windstroms. Nat. Hazards Earth Syst. Sci. 2016;16:1999–2007. doi: 10.5194/nhess-16-1999-2016. [CrossRef] [Google Scholar]

57. Guy C. Windstorm Erwin/Gudrun—January 2005. Guy Carpenter & Company Ltd.; New York, NY, USA: 2005. [Google Scholar]

58. Met Office Storm Ciara. [(accessed on 5 January 2022)];2020 Available online: https://www.metoffice.gov.uk/weather/warnings-and-advice/uk-storm-centre/storm-ciara

59. BCC News 10 Key Moments of the UK Winter Storms. 2014. [(accessed on 5 January 2022)]. Available online: https://www.bbc.com/news/uk-26170904

60. Wetterdienst D. Severe Storm XAVER Across Northern Europe from 5 to 7 December 2013. Deutscher Wetterdienst; Offenbach, Germany: 2013. [Google Scholar]

61. Flood List Northern Europe—Storm Eleanor Brings Strong Winds and Flooding. 2018. [(accessed on 5 January 2022)]. Available online: https://floodlist.com/europe/storm-eleanor-winds-floods-january-2018

62. National Hurricane Center . Tropical Cyclone Report: Tropical Storm Andrea. National Hurricane Center; Miami, FL, USA: 2013. [Google Scholar]

63. National Hurricane Center. [(accessed on 5 January 2022)];2021 Available online: https://www.nhc.noaa.gov/archive/2019

64. Macau Geophysical and Meteorological Bureau. [(accessed on 12 July 2021)]; Available online: https://www.smg.gov.mo/zh

65. Tennille S.A., Ellis K.N. Spatial and temporal trends in the locaiton of the lifetime maximum intensity of tropical cyclones. Atmosphere. 2017;8:198. doi: 10.3390/atmos8100198. [CrossRef] [Google Scholar]

66. Kunkel K.E., Pielke R.A., Jr., Changnon S.A. Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: A review. Bull. Am. Meteorol. Soc. 1999;80:1077–1098. doi: 10.1175/1520-0477(1999)080<1077:TFIWAC>2.0.CO;2. [CrossRef] [Google Scholar]

67. WMO . Comprehensive Risk Assessment for Natural Hazards—Technical Document 955. World Meteorological Organisation; Geneva, Switzerland: 1999. [Google Scholar]

68. Julião R.P., Nery F., Ribeiro J.L., Castelo Branco M., Zêzere J. Guia Metodológico para a Produção de Cartografia Municipal de Risco e para a Criação de Sistemas de Informação Geográfica (SIG) de base Municipal. Autoridade Nacional de Protecção Civil; Viana do Castelo, Portugal: 2009. [Google Scholar]

69. Munich R.E. Record Hurricane Season and Major Wildfires—The Natural Disaster Figures for 2020. [(accessed on 4 February 2022)]. Available online: https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/2021/2020-natural-disasters-balance.html

70. Insider Why Hurricanes Hardly Ever Hit Europe. [(accessed on 22 January 2022)]. Available online: https://www.businessinsider.com/why-hurricanes-never-hit-europe-2018-10

71. Lotus Arise Tropical Cyclone—Formation & Characteristics—UPSC. [(accessed on 22 January 2022)]. Available online: https://lotusarise.com/tropical-cyclone-upsc/

72. Alamar R., Marchesiello P., Almeida L.P., Thuan D.H., Tanaka H., Viet N.T. Shoreline response to a sequence of typhoon and moonsoon events. Water. 2017;9:364. doi: 10.3390/w9060364. [CrossRef] [Google Scholar]

73. Deo A., Chand S.S., Ramsay H., Holbrook N.J., McGree S., Magee A., Bell S., Titimaea M., Haruhiru A., Malsale P., et al. Tropical cyclone contribution to extreme rainfall over southwest Pacific Island nations. Clim. Dyn. 2021;56:3967–3993. doi: 10.1007/s00382-021-05680-5. [CrossRef] [Google Scholar]

74. Fang J., Wahl T., Fang J., Sun X., Kong F., Liu M. Compound flood potential from storm surge and heavy precipitation in coastal China. Hydrol. Earth Syst. Sci. 2020;25:4403–4416. doi: 10.5194/hess-25-4403-2021. [CrossRef] [Google Scholar]

75. World Health Organization. [(accessed on 18 March 2022)]. Available online: https://www.euro.who.int/en/health-topics/environment-and-health/Climate-change/news/news/2013/05/how-flooding-affects-health

76. Chen M.J., Lin C.Y., Wu Y.T., Wu P.C., Lung S.C., Su H.J. Effects of extreme precipitation to the distribution of infectious diseases in Taiwan, 1994–2008. PLoS ONE. 2012;7:e34651. doi: 10.1371/journal.pone.0034651. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Fakour H., Lo S.L., Lin T.F. Impacts of typhoon Soudelor (2015) on the water quality of Taipei, Taiwan. Sci. Rep. 2016;6:25228. doi: 10.1038/srep25228. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Kim J.S., Chen A., Lee J., Moon I.J., Moon Y.I. Statistical prediction of typhoon-induced rainfall over China using historical rainfall, tracks, and intensity of typhoon in the Western North Pacific. Remote Sens. 2020;12:4133. doi: 10.3390/rs12244133. [CrossRef] [Google Scholar]

79. Zhang Q., Zhang W., Chen Y.D., Jiang T. Flood, drought and typhoon disasters during the last half-century in the Guangdong province, China. Nat. Hazards. 2011;57:267–278. doi: 10.1007/s11069-010-9611-9. [CrossRef] [Google Scholar]

80. Dulebenets M.A. A comprehensive multi-objective optimization model for the vessel scheduling problem in liner shipping. Int. J. Prod. Econ. 2018;196:293–318. doi: 10.1016/j.ijpe.2017.10.027. [CrossRef] [Google Scholar]

81. Dulebenets M.A. Advantages and disadvantages from enforcing emission restrictions within emission control areas. Marit. Bus. Rev. 2016;1:107–132. doi: 10.1108/MABR-05-2016-0011. [CrossRef] [Google Scholar]

82. Dulebenets M.A., Pasha J., Abioye O.F., Kavoosi M. Vessel scheduling in liner shipping: A critical literature review and future research needs. Flex. Serv. Manuf. J. 2021;33:43–106. doi: 10.1007/s10696-019-09367-2. [CrossRef] [Google Scholar]

83. Liu Z., Tang Y.M., Chau K.Y., Chien F., Iqbal W., Sadiq M. Incorporating strategic petroleum reserve and welfare losses: A way forward for the policy development of crude oil resources in South Asia. Resour. Policy. 2021;74:102309. doi: 10.1016/j.resourpol.2021.102309. [CrossRef] [Google Scholar]

84. Bouwer L.M., Jonkman S.N. Global mortality from strom surges is decreasing. Environ. Res. Lett. 2018;13:014008. doi: 10.1088/1748-9326/aa98a3. [CrossRef] [Google Scholar]

85. EM-DAT. [(accessed on 5 February 2022)]. Available online: https://www.emdat.be/

86. Shen Y., Lou S., Zhao X., Ip K.P., Xu H., Zhang J. Factors impacting risk percpetion under typhoon disaster in Macao SAR, China. Int. J. Public Environ. Res. Publich Health. 2020;17:7357. doi: 10.3390/ijerph17207357. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Lee T.C., Knutson T.R., Nakaegawa T., Ying M., Cha E.J. Third assessment on impacts of climate change on tropical cyclones in the Typhoon Committee Region—Part I: Observed changes, detection and attribution. Trop. Cyclone Res. Rev. 2020;9:1–22. doi: 10.1016/j.tcrr.2020.03.001. [CrossRef] [Google Scholar]

88. Yu J., Tang Y.M., Chau K.Y., Nazar R., Ali S., Iqbal W. Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation. Renew. Energy. 2022;182:216–226. doi: 10.1016/j.renene.2021.10.002. [CrossRef] [Google Scholar]

89. Iqbal W., Tang Y.M., Lijun M., Chau K.Y., Xuan W., Fatima A. Energy policy paradox on environmental performance: The moderating role of renewable energy patents. J. Environ. Manag. 2021;297:113230. doi: 10.1016/j.jenvman.2021.113230. [PubMed] [CrossRef] [Google Scholar]