When the lateral hypothalamus of a rat is destroyed, it may most likely:

1. Broberger C, De Lecea L, Sutcliffe JG, Hökfelt T. Hypocretin/Orexin-and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: Relationship to the neuropeptide Y and agouti gene-related protein systems. J Comp Neurol. 1998;402:460–474. [PubMed] [Google Scholar]

2. Lee H, et al. Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature. 2014;509:627–632. [PMC free article] [PubMed] [Google Scholar]

3. Lein ES, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168–176. [PubMed] [Google Scholar]

4. Puelles L, Rubenstein JLR. Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci. 2003;26:469–476. [PubMed] [Google Scholar]

5. Saper CB, Chou TC, Elmquist JK. The Need to Feed: Homeostatic and Hedonic Control of Eating. Neuron. 2002;36:199–211. [PubMed] [Google Scholar]

6. Hess WR. The functional organization of the diencephalon. Grune & Stratton; New York: 1957. [Google Scholar]

7. Martini L, Ganong WF. Neuroendocrinology. Elsevier; 2013. [Google Scholar]

8. THE HUMAN HYPOTHALAMUS IN HEALTH AND DISEASE. Elsevier; 1992. [Google Scholar]

9. Bernardis LL, Bellinger LL. The lateral hypothalamic area revisited: Neuroanatomy, body weight regulation, neuroendocrinology and metabolism. Neurosci Biobehav Rev. 1993;17:141–193. [PubMed] [Google Scholar]

10. Millhouse OE. A Golgi study of the descending medial forebrain bundle. Brain Res. 1969;15:341–363. [PubMed] [Google Scholar]

11. Palkovits M, Van Cuc H. Quantitative light and electron microscopic studies on the lateral hypothalamus in rat. Cell and synaptic densities. Brain Res Bull. 1980;5:643–647. [PubMed] [Google Scholar]

12. Berthoud HR, Münzberg H. The lateral hypothalamus as integrator of metabolic and environmental needs: from electrical self-stimulation to opto-genetics. Physiol Behav. 2011;104:29–39. [PMC free article] [PubMed] [Google Scholar]

13. Nieuwenhuys R, Geeraedts LM, Veening JG. The medial forebrain bundle of the rat. I. General introduction. J Comp Neurol. 1982;206:49–81. [PubMed] [Google Scholar]

14. Anand BK, Brobeck JR. Localization of a ‘feeding center’ in the hypothalamus of the rat. Proc Soc Exp Biol Med Soc Exp Biol Med N Y N. 1951;77:323–324. [PubMed] [Google Scholar]

15. Montemurro DG, Stevenson JA. Adipsia produced by hypothalamic lesions in the rat. Can J Biochem Physiol. 1957;35:31–37. [PubMed] [Google Scholar]

16. Hetherington AW, Ranson SW. Hypothalamic lesions and adiposity in the rat. Anat Rec. 1940;78:465–466. [Google Scholar]

17. Ungerstedt U. Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl. 1971;367:95–122. [PubMed] [Google Scholar]

18. Kapatos G, Gold RM. Evidence for ascending noradrenergic mediation of hypothalamic hyperphagia. Pharmacol Biochem Behav. 1973;1:81–87. [PubMed] [Google Scholar]

19. Grossman SP, Dacey D, Halaris AE, Collier T, Routtenberg A. Aphagia and adipsia after preferential destruction of nerve cell bodies in hypothalamus. Science. 1978;202:537–539. [PubMed] [Google Scholar]

20. Grossman SP, Grossman L. Iontophoretic injections of kainic acid into the rat lateral hypothalamus: effects on ingestive behavior. Physiol Behav. 1982;29:553–559. [PubMed] [Google Scholar]

21. Stricker EM, Swerdloff AF, Zigmond MJ. Intrahypothalamic injections of kainic acid produce feeding and drinking deficits in rats. Brain Res. 1978;158:470–473. [PubMed] [Google Scholar]

22. DELGADO JMR, ANAND BK. Increase of food intake induced by electrical stimulation of the lateral hypothalamus. Am J Physiol. 1953;172:162–168. [PubMed] [Google Scholar]

23. Olds J, Milner P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol. 1954;47:419–427. [PubMed] [Google Scholar]

24. Hoebel BG, Teitelbaum P. Hypothalamic control of feeding and self-stimulation. Science. 1962;135:375–377. [PubMed] [Google Scholar]

25. Margules DL, Olds J. Identical ‘feeding’ and ‘rewarding’ systems in the lateral hypothalamus of rats. Science. 1962;135:374–375. [PubMed] [Google Scholar]

26. Stanley BG, Ha LH, Spears LC, Dee MG., 2nd Lateral hypothalamic injections of glutamate, kainic acid, D,L-alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid or N-methyl-D-aspartic acid rapidly elicit intense transient eating in rats. Brain Res. 1993;613:88–95. [PubMed] [Google Scholar]

27. Kelly J, Rothstein J, Grossman SP. GABA and hypothalamic feeding systems. I. Topographic analysis of the effects of microinjections of muscimol. Physiol Behav. 1979;23:1123–1134. [PubMed] [Google Scholar]

28. Bower GH, Miller NE. Rewarding and punishing effects from stimulating the same place in the rat’s brain. J Comp Physiol Psychol. 1958;51:669–674. [PubMed] [Google Scholar]

29. Mendelson J, Freed WJ. Do rats terminate hypothalamic stimulation only in order to turn it on again? Behav Biol. 1973;8:619–628. [PubMed] [Google Scholar]

30. Caggiula AR, Hoebel BG. ‘Copulation-reward site’ in the posterior hypothalamus. Science. 1966;153:1284–1285. [PubMed] [Google Scholar]

31. Mogenson GJ, Stevenson JA. Drinking induced by electrical stimulation of the lateral hypothalamus. Exp Neurol. 1967;17:119–127. [PubMed] [Google Scholar]

32. Roberts WW, Carey RJ. REWARDING EFFECT OF PERFORMANCE OF GNAWING AROUSED BY HYPOTHALAMIC STIMULATION IN THE RAT. J Comp Physiol Psychol. 1965;59:317–324. [PubMed] [Google Scholar]

33. Glickman SE, Schiff BB. A biological theory of reinforcement. Psychol Rev. 1967;74:81–109. [PubMed] [Google Scholar]

34. Hutchinson RR, Renfrew JW. Stalking attack and eating behaviors elicited from the same sites in the hypothalamus. J Comp Physiol Psychol. 1966;61:360–367. [PubMed] [Google Scholar]

35. Coons EE, Levak M, Miller NE. Lateral hypothalamus: learning of food-seeking response motivated by electrical stimulation. Science. 1965;150:1320–1321. [PubMed] [Google Scholar]

36. Wise RA. Individual differences in effects of hypothalamic stimulation: the role of stimulation locus. Physiol Behav. 1971;6:569–572. [PubMed] [Google Scholar]

37. Valenstein ES, Cox VC, Kakolewski JW. Modification of Motivated Behavior Elicited by Electrical Stimulation of the Hypothalamus. Science. 1968;159:1119–1121. [PubMed] [Google Scholar]

38. Wise RA. Hypothalamic motivational systems: fixed or plastic neural circuits? Science. 1968;162:377–379. [PubMed] [Google Scholar]

39. Mendleson J. The role of hunger in the T-maze learning for food by rats. J Comp Physiol Psychol. 1966;62:341–349. [Google Scholar]

40. Mendelson J, Chorover SL. LATERAL HYPOTHALAMIC STIMULATION IN SATIATED RATS: T-MAZE LEARNING FOR FOOD. Science. 1965;149:559–561. [PubMed] [Google Scholar]

41. Andersson B, Wyrwicka W. The elicitation of a drinking motor conditioned reaction by electrical stimulation of the hypothalamic drinking area in the goat. Acta Physiol Scand. 1957;41:194–198. [PubMed] [Google Scholar]

42. Tenen SS, Miller NE. STRENGTH OF ELECTRICAL STIMULATION OF LATERAL HYPOTHALAMUS, FOOD DEPRIVATION, AND TOLERANCE FOR QUININE IN FOOD. J Comp Physiol Psychol. 1964;58:55–62. [PubMed] [Google Scholar]

43. Wise RA, Albin J. Stimulation-induced eating disrupted by a conditioned taste aversion. Behav Biol. 1973;9:289–297. [PubMed] [Google Scholar]

44. Flynn JP. Neural aspects of attack behavior in cats. Ann N Y Acad Sci. 1969;159:1008–1012. [PubMed] [Google Scholar]

45. MacDonnell MF, Flynn JP. Sensory control of hypothalamic attack. Anim Behav. 1966;14:399–405. [PubMed] [Google Scholar]

46. MacDonnell MF, Flynn JP. Control of sensory fields by stimulation of hypothalamus. Science. 1966;152:1406–1408. [PubMed] [Google Scholar]

47. Fulton S, Woodside B, Shizgal P. Modulation of brain reward circuitry by leptin. Science. 2000;287:125–128. [PubMed] [Google Scholar]

48. Fulton S, Woodside B, Shizgal P. Potentiation of brain stimulation reward by weight loss: evidence for functional heterogeneity in brain reward circuitry. Behav Brain Res. 2006;174:56–63. [PubMed] [Google Scholar]

49. Mogenson GJ, Gentil CG, Stevenson JA. Feeding and drinking elicited by low and high frequencies of hypothalamic stimulation. Brain Res. 1971;33:127–137. [PubMed] [Google Scholar]

50. Morgane PJ. Evidence of a ‘hunger motivational’ system in the lateral hypothalamus of the rat. Nature. 1961;191:672–674. [PubMed] [Google Scholar]

51. Ranck JB. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98:417–440. [PubMed] [Google Scholar]

52. Greer MA. Suggestive evidence of a primary drinking center in hypothalamus of the rat. Proc Soc Exp Biol Med Soc Exp Biol Med N Y N. 1955;89:59–62. [PubMed] [Google Scholar]

53. Olds J. Pleasure centers in the brain. Sci Am. 1956;195:105–116. [Google Scholar]

54. Wise RA. Lateral hypothalamic electrical stimulation: does it make animals ‘hungry’? Brain Res. 1974;67:187–209. [PubMed] [Google Scholar]

55. Wise RA. Dual roles of dopamine in food and drug seeking: the drive-reward paradox. Biol Psychiatry. 2013;73:819–826. [PMC free article] [PubMed] [Google Scholar]

56. Phillips AG, Nikaido RS. Disruption of brain stimulation-induced feeding by dopamine receptor blockade. Nature. 1975;258:750–751. [PubMed] [Google Scholar]

57. Fouriezos G, Hansson P, Wise RA. Neuroleptic-induced attenuation of brain stimulation reward in rats. J Comp Physiol Psychol. 1978;92:661–671. [PubMed] [Google Scholar]

58. Fouriezos G, Wise RA. Pimozide-induced extinction of intracranial self-stimulation: response patterns rule out motor or performance deficits. Brain Res. 1976;103:377–380. [PubMed] [Google Scholar]

59. Franklin KB. Catecholamines and self-stimulation: reward and performances effects dissociated. Pharmacol Biochem Behav. 1978;9:813–820. [PubMed] [Google Scholar]

60. Franklin KB, McCoy SN. Pimozide-induced extinction in rats: stimulus control of responding rules out motor deficit. Pharmacol Biochem Behav. 1979;11:71–75. [PubMed] [Google Scholar]

61. Gallistel CR, Boytim M, Gomita Y, Klebanoff L. Does pimozide block the reinforcing effect of brain stimulation? Pharmacol Biochem Behav. 1982;17:769–781. [PubMed] [Google Scholar]

62. Wise RA. Catecholamine theories of reward: a critical review. Brain Res. 1978;152:215–247. [PubMed] [Google Scholar]

63. Gallistel CR, Shizgal P, Yeomans JS. A portrait of the substrate for self-stimulation. Psychol Rev. 1981;88:228–273. [PubMed] [Google Scholar]

64. Yeomans JS. The absolute refractory periods of self-stimulation neurons. Physiol Behav. 1979;22:911–919. [PubMed] [Google Scholar]

65. Gratton A, Wise RA. Hypothalamic reward mechanism: two first-stage fiber populations with a cholinergic component. Science. 1985;227:545–548. [PubMed] [Google Scholar]

66. Shizgal P, Bielajew C, Corbett D, Skelton R, Yeomans J. Behavioral methods for inferring anatomical linkage between rewarding brain stimulation sites. J Comp Physiol Psychol. 1980;94:227–237. [PubMed] [Google Scholar]

67. Bielajew C, Shizgal P. Evidence implicating descending fibers in self-stimulation of the medial forebrain bundle. J Neurosci Off J Soc Neurosci. 1986;6:919–929. [PMC free article] [PubMed] [Google Scholar]

68. Bielajew C, Bushnik T, Konkle AT, Schindler D. The substrate for brain-stimulation reward in the lateral preoptic area. II. Connections to the ventral tegmental area. Brain Res. 2000;881:112–120. [PubMed] [Google Scholar]

69. Wise RA, Bozarth MA. Brain substrates for reinforcement and drug self-administration. Prog Neuropsychopharmacol. 1981;5:467–474. [PubMed] [Google Scholar]

70. Yeomans JS. The Neural Basis of Feeding and Reward. Haer Institute; 1982. pp. 405–417. [Google Scholar]

71. Wise RA, Spindler J, deWit H, Gerberg GJ. Neuroleptic-induced ‘anhedonia’ in rats: pimozide blocks reward quality of food. Science. 1978;201:262–264. [PubMed] [Google Scholar]

72. De Wit H, Wise RA. Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine or phenoxybenzamine. Can J Psychol. 1977;31:195–203. [PubMed] [Google Scholar]

73. Yokel RA, Wise RA. Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward. Science. 1975;187:547–549. [PubMed] [Google Scholar]

74. Gratton A, Wise RA. Comparisons of refractory periods for medial forebrain bundle fibers subserving stimulation-induced feeding and brain stimulation reward: a psychophysical study. Brain Res. 1988;438:256–263. [PubMed] [Google Scholar]

75. Gratton A, Wise RA. Comparisons of connectivity and conduction velocities for medial forebrain bundle fibers subserving stimulation-induced feeding and brain stimulation reward. Brain Res. 1988;438:264–270. [PubMed] [Google Scholar]

76. Allen GV, Cechetto DF. Neurotensin in the lateral hypothalamic area: Origin and function. Neuroscience. 1995;69:533–544. [PubMed] [Google Scholar]

77. Burdakov D, Alexopoulos H. Metabolic state signalling through central hypocretin/orexin neurons. J Cell Mol Med. 2005;9:795–803. [PMC free article] [PubMed] [Google Scholar]

78. Collin M, et al. Plasma membrane and vesicular glutamate transporter mRNAs/proteins in hypothalamic neurons that regulate body weight. Eur J Neurosci. 2003;18:1265–1278. [PubMed] [Google Scholar]

79. Goforth PB, Leinninger GM, Patterson CM, Satin LS, Myers MG. Leptin acts via lateral hypothalamic area neurotensin neurons to inhibit orexin neurons by multiple GABA-independent mechanisms. J Neurosci Off J Soc Neurosci. 2014;34:11405–11415. [PMC free article] [PubMed] [Google Scholar]

80. Griffond B, Risold PY. MCH and feeding behavior-interaction with peptidic network. Peptides. 2009;30:2045–2051. [PubMed] [Google Scholar]

81. Knight ZA, et al. Molecular profiling of activated neurons by phosphorylated ribosome capture. Cell. 2012;151:1126–1137. [PMC free article] [PubMed] [Google Scholar]

82. Laque A, et al. Leptin receptor neurons in the mouse hypothalamus are co-localized with the neuropeptide galanin and mediate anorexigenic leptin action. Am J Physiol Endocrinol Metab. 2013 doi: 10.1152/ajpendo.00643.2012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Leinninger GM, et al. Leptin Acts via Leptin Receptor-Expressing Lateral Hypothalamic Neurons to Modulate the Mesolimbic Dopamine System and Suppress Feeding. Cell Metab. 2009;10:89–98. [PMC free article] [PubMed] [Google Scholar]

84. Rosin DL, Weston MC, Sevigny CP, Stornetta RL, Guyenet PG. Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2. J Comp Neurol. 2003;465:593–603. [PubMed] [Google Scholar]

85. Ziegler DR, Cullinan WE, Herman JP. Distribution of vesicular glutamate transporter mRNA in rat hypothalamus. J Comp Neurol. 2002;448:217–229. [PubMed] [Google Scholar]

86. Acuna-Goycolea C, Tamamaki N, Yanagawa Y, Obata K, van den Pol AN. Mechanisms of Neuropeptide Y, Peptide YY, and Pancreatic Polypeptide Inhibition of Identified Green Fluorescent Protein-Expressing GABA Neurons in the Hypothalamic Neuroendocrine Arcuate Nucleus. J Neurosci. 2005;25:7406–7419. [PMC free article] [PubMed] [Google Scholar]

87. Karnani MM, Szabó G, Erdélyi F, Burdakov D. Lateral hypothalamic GAD65 neurons are spontaneously firing and distinct from orexin-and melanin-concentrating hormone neurons. J Physiol. 2013;591:933–953. [PMC free article] [PubMed] [Google Scholar]

88. Luiten PGM, ter Horst GJ, Steffens AB. The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation to the control of feeding and metabolism. Prog Neurobiol. 1987;28:1–54. [PubMed] [Google Scholar]

89. de Lecea L, et al. The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci. 1998;95:322–327. [PMC free article] [PubMed] [Google Scholar]

90. Harrison TA, Chen CT, Dun NJ, Chang JK. Hypothalamic orexin A-immunoreactive neurons project to the rat dorsal medulla. Neurosci Lett. 1999;273:17–20. [PubMed] [Google Scholar]

91. Sakurai T. Orexins and orexin receptors: implication in feeding behavior. Regul Pept. 1999;85:25–30. [PubMed] [Google Scholar]

92. Haynes AC, et al. Anorectic, thermogenic and anti-obesity activity of a selective orexin-1 receptor antagonist in ob/ob mice. Regul Pept. 2002;104:153–159. [PubMed] [Google Scholar]

93. Harris GC, Wimmer M, Aston-Jones G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature. 2005;437:556–559. [PubMed] [Google Scholar]

94. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 2007;450:420–424. [PMC free article] [PubMed] [Google Scholar]

95. Hara J, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30:345–354. [PubMed] [Google Scholar]

96. Sakurai T. The role of orexin in motivated behaviours. Nat Rev Neurosci. 2014;15:719–731. [PubMed] [Google Scholar]

97. Bittencourt JC, et al. The melanin-concentrating hormone system of the rat brain: An immuno-and hybridization histochemical characterization. J Comp Neurol. 1992;319:218–245. [PubMed] [Google Scholar]

98. Elias CF, et al. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol. 1998;402:442–459. [PubMed] [Google Scholar]

99. Harthoorn LF, Sañé A, Nethe M, Heerikhuize JJ. Multi-Transcriptional Profiling of Melanin-Concentrating Hormone and Orexin-Containing Neurons. Cell Mol Neurobiol. 2005;25:1209–1223. [PubMed] [Google Scholar]

100. Jego S, et al. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci. 2013;16:1637–1643. [PMC free article] [PubMed] [Google Scholar]

101. Qu D, et al. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature. 1996;380:243–247. [PubMed] [Google Scholar]

102. Ludwig DS, et al. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest. 2001;107:379–386. [PMC free article] [PubMed] [Google Scholar]

103. Alon T, Friedman JM. Late-onset leanness in mice with targeted ablation of melanin concentrating hormone neurons. J Neurosci Off J Soc Neurosci. 2006;26:389–397. [PMC free article] [PubMed] [Google Scholar]

104. Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature. 1998;396:670–674. [PubMed] [Google Scholar]

105. Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci. 2015;9:9. [PMC free article] [PubMed] [Google Scholar]

106. Kahn D, Abrams GM, Zimmerman EA, Carraway R, Leeman SE. Neurotensin neurons in the rat hypothalamus: an immunocytochemical study. Endocrinology. 1980;107:47–54. [PubMed] [Google Scholar]

107. Cooke JH, et al. Peripheral and central administration of xenin and neurotensin suppress food intake in rodents. Obes Silver Spring Md. 2009;17:1135–1143. [PubMed] [Google Scholar]

108. Kim ER, Leckstrom A, Mizuno TM. Impaired anorectic effect of leptin in neurotensin receptor 1-deficient mice. Behav Brain Res. 2008;194:66–71. [PubMed] [Google Scholar]

109. Leinninger GM, et al. Leptin Action via Neurotensin Neurons Controls Orexin, the Mesolimbic Dopamine System and Energy Balance. Cell Metab. 2011;14:313–323. [PMC free article] [PubMed] [Google Scholar]

110. Vong L, et al. Leptin Action on GABAergic Neurons Prevents Obesity and Reduces Inhibitory Tone to POMC Neurons. Neuron. 2011;71:142–154. [PMC free article] [PubMed] [Google Scholar]

111. Jennings JH, et al. Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell. 2015;160:516–527. [PMC free article] [PubMed] [Google Scholar]

112. Jennings JH, Rizzi G, Stamatakis AM, Ung RL, Stuber GD. The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science. 2013;341:1517–1521. [PMC free article] [PubMed] [Google Scholar]

113. Stamatakis AM, et al. Lateral hypothalamic glutamatergicneurons regulate feeding and rewardvia projections to the lateral habenula. Journal of Neuroscience. 2015 [PMC free article] [PubMed] [Google Scholar]

114. Kita H, Oomura Y. Reciprocal connections between the lateral hypothalamus and the frontal cortex in the rat: Electrophysiological and anatomical observations. Brain Res. 1981;213:1–16. [PubMed] [Google Scholar]

115. Nauta WJH. Hippocampal Projections and Related Neural Pathways to the Mid-Brain in the Cat. Brain. 1958;81:319–340. [PubMed] [Google Scholar]

116. Anthony TE, et al. Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell. 2014;156:522–536. [PMC free article] [PubMed] [Google Scholar]

117. Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C. Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience. 1991;41:89–125. [PubMed] [Google Scholar]

118. Zahm DS, Brog JS. On the significance of subterritories in the ‘accumbens’ part of the rat ventral striatum. Neuroscience. 1992;50:751–767. [PubMed] [Google Scholar]

119. Root DH, Melendez RI, Zaborszky L, Napier TC. The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol. 2015;130:29–70. [PMC free article] [PubMed] [Google Scholar]

120. Grove EA. Efferent connections of the substantia innominata in the rat. J Comp Neurol. 1988;277:347–364. [PubMed] [Google Scholar]

121. Yoshida K, McCormack S, España RA, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Comp Neurol. 2006;494:845–861. [PMC free article] [PubMed] [Google Scholar]

122. Jones BE, Moore RY. Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res. 1977;127:23–53. [PubMed] [Google Scholar]

123. Moore RY, Halaris AE, Jones BE. Serotonin neurons of the midbrain raphe: Ascending projections. J Comp Neurol. 1978;180:417–438. [PubMed] [Google Scholar]

124. Betley JN, Cao ZFH, Ritola KD, Sternson SM. Parallel, Redundant Circuit Organization for Homeostatic Control of Feeding Behavior. Cell. 2013;155:1337–1350. [PMC free article] [PubMed] [Google Scholar]

125. Wu Z, et al. GABAergic Projections from Lateral Hypothalamus to Paraventricular Hypothalamic Nucleus Promote Feeding. J Neurosci. 2015;35:3312–3318. [PMC free article] [PubMed] [Google Scholar]

126. Canteras NS, Simerly RB, Swanson LW. Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol. 1994;348:41–79. [PubMed] [Google Scholar]

127. Maldonado-Irizarry CS, Swanson CJ, Kelley AE. Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. J Neurosci. 1995;15:6779–6788. [PMC free article] [PubMed] [Google Scholar]

128. Stratford TR, Kelley AE. GABA in the Nucleus Accumbens Shell Participates in the Central Regulation of Feeding Behavior. J Neurosci. 1997;17:4434–4440. [PMC free article] [PubMed] [Google Scholar]

129. Stratford TR, Kelley AE. Evidence of a Functional Relationship between the Nucleus Accumbens Shell and Lateral Hypothalamus Subserving the Control of Feeding Behavior. J Neurosci. 1999;19:11040–11048. [PMC free article] [PubMed] [Google Scholar]

130. O’Connor EC, et al. Accumbal D1R Neurons Projecting to Lateral Hypothalamus Authorize Feeding. Neuron. 2015;88:553–564. [PubMed] [Google Scholar]

131. Behbehani MM. Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol. 1995;46:575–605. [PubMed] [Google Scholar]

132. Berk ML, Finkelstein JA. Efferent connections of the lateral hypothalamic area of the rat: An autoradiographic investigation. Brain Res Bull. 1982;8:511–526. [PubMed] [Google Scholar]

133. Nieh EH, et al. Decoding Neural Circuits that Control Compulsive Sucrose Seeking. Cell. 2015;160:528–541. [PMC free article] [PubMed] [Google Scholar]

134. Jennings JH, et al. Distinct extended amygdala circuits for divergent motivational states. Nature. 2013;496:224–228. [PMC free article] [PubMed] [Google Scholar]

135. Kempadoo KA, et al. Hypothalamic neurotensin projections promote reward by enhancing glutamate transmission in the VTA. J Neurosci Off J Soc Neurosci. 2013;33:7618–7626. [PMC free article] [PubMed] [Google Scholar]

136. van Zessen R, Phillips JL, Budygin EA, Stuber GD. Activation of VTA GABA neurons disrupts reward consumption. Neuron. 2012;73:1184–1194. [PMC free article] [PubMed] [Google Scholar]

137. Tan KR, et al. GABA neurons of the VTA drive conditioned place aversion. Neuron. 2012;73:1173–1183. [PMC free article] [PubMed] [Google Scholar]

138. Poller WC, Madai VI, Bernard R, Laube G, Veh RW. A glutamatergic projection from the lateral hypothalamus targets VTA-projecting neurons in the lateral habenula of the rat. Brain Res. 2013 doi: 10.1016/j.brainres.2013.01.029. [PubMed] [CrossRef] [Google Scholar]

139. Lammel S, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature. 2012;491:212–217. [PMC free article] [PubMed] [Google Scholar]

140. Shabel SJ, Proulx CD, Trias A, Murphy RT, Malinow R. Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin. Neuron. 2012;74:475–481. [PMC free article] [PubMed] [Google Scholar]

141. Stratford TR, Wirtshafter D. Injections of muscimol into the paraventricular thalamic nucleus, but not mediodorsal thalamic nuclei, induce feeding in rats. Brain Res. 2013;1490:128–133. [PMC free article] [PubMed] [Google Scholar]

142. Carter ME, Soden ME, Zweifel LS, Palmiter RD. Genetic identification of a neural circuit that suppresses appetite. Nature. 2013;503:111–114. [PMC free article] [PubMed] [Google Scholar]

143. Carter ME, Han S, Palmiter RD. Parabrachial calcitonin gene-related peptide neurons mediate conditioned taste aversion. J Neurosci Off J Soc Neurosci. 2015;35:4582–4586. [PMC free article] [PubMed] [Google Scholar]

144. Horvath TL, Diano S, van den Pol AN. Synaptic Interaction between Hypocretin (Orexin) and Neuropeptide Y Cells in the Rodent and Primate Hypothalamus: A Novel Circuit Implicated in Metabolic and Endocrine Regulations. J Neurosci. 1999;19:1072–1087. [PMC free article] [PubMed] [Google Scholar]

145. Fukuda M, Ono T, Nishino H, Nakamura K. Neuronal responses in monkey lateral hypothalamus during operant feeding behavior. Brain Res Bull. 1986;17:879–883. [PubMed] [Google Scholar]

146. Ono T, Nakamura K, Nishijo H, Fukuda M. Hypothalamic neuron involvement in integration of reward, aversion, and cue signals. J Neurophysiol. 1986;56:63–79. [PubMed] [Google Scholar]

147. Ono T, Nakamura K, Fukuda M, Kobayashi T. Catecholamine and acetylcholine sensitivity of rat lateral hypothalamic neurons related to learning. J Neurophysiol. 1992;67:265–279. [PubMed] [Google Scholar]

148. Schwartzbaum JS. Electrophysiology of taste, feeding and reward in lateral hypothalamus of rabbit. Physiol Behav. 1988;44:507–526. [PubMed] [Google Scholar]

149. Macosko EZ, et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015;161:1202–1214. [PMC free article] [PubMed] [Google Scholar]

150. Olds J. Self-stimulation of the brain; its use to study local effects of hunger, sex, and drugs. Science. 1958;127:315–324. [PubMed] [Google Scholar]


Page 2

When the lateral hypothalamus of a rat is destroyed, it may most likely:

Electrical stimulation of the LHA produces reinforcement

a. Animals will self-stimulate in many regions of the ventral forebrain, but only the LHA electrical self-stimulation is largely insatiable (b). c. Illustration showing that the forebrain and hypothalamus sites (shaded) that supports electrical self-stimulation. Adapted from150.

  • When the lateral hypothalamus of a rat is destroyed, it may most likely:
  • When the lateral hypothalamus of a rat is destroyed, it may most likely:
  • When the lateral hypothalamus of a rat is destroyed, it may most likely:
  • When the lateral hypothalamus of a rat is destroyed, it may most likely:

Click on the image to see a larger version.