Which of the following best explains the difference between semelparous and iteroparous species?

  1. Stearns S: The Evolution of Life Histories. 1992, Oxford, UK: Oxford University Press, 262-

    Google Scholar 

  2. Roff DA: The Evolution of Life Histories: Theory and Analysis. 1992, New York: Chapman and Hall

    Google Scholar 

  3. Roff DA: Life History Evolution. 2001, New York: Sinauer Associates, 527-

    Google Scholar 

  4. Meunier J, Wong JWY, Gómez Y, Kuttler S, Röllin L, Stucki D, Kölliker M: One clutch or two clutches? Fitness correlates of coexisting alternative female life-histories in the European earwig. Evol Ecol. 2011, 26: 669-682.

    Article  Google Scholar 

  5. Cole L: The population consequences of life history phenomena. Q Rev Biol. 1954, 29: 103-137. 10.1086/400074.

    PubMed  CAS  Article  Google Scholar 

  6. Charnov E, Schaffer W: Life-history consequences of natural selection: Cole’s result revisited. Am Nat. 1973, 107: 791-793. 10.1086/282877.

    Article  Google Scholar 

  7. Young T: A general model of comparative fecundity for semelparous and iteroparous life histories. Am Nat. 1981, 118: 27-36. 10.1086/283798.

    Article  Google Scholar 

  8. Bulmer M: Selection for iteroparity in a variable environment. Am Nat. 1985, 126: 63-71. 10.1086/284396.

    Article  Google Scholar 

  9. Kirkendall LR, Stenseth NC: On defining “Breeding Once”. Am Nat. 1985, 125: 189-204. 10.1086/284337.

    Article  Google Scholar 

  10. Young TP, Augspurger CK: Ecology and evolution of long-lived semelparous plants. Trends Ecol Evol. 1991, 6: 285-289. 10.1016/0169-5347(91)90006-J.

    PubMed  CAS  Article  Google Scholar 

  11. Morse D: Numbers of broods produced by the crab spider Misumena vatia (Araneae, Thomisidae). J Arachnol. 1994, 22: 195-199.

    Google Scholar 

  12. Golding DW, Yuwono E: Latent capacities for gametogenic cycling in the semelparous invertebrate Nereis. Proc Natl Acad Sci U S A. 1994, 91: 11777-11781. 10.1073/pnas.91.25.11777.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  13. Christiansen JS, Præbel K, Siikavuopio SI, Carscadden JE: Facultative semelparity in capelin Mallotus villosus (Osmeridae)-an experimental test of a life history phenomenon in a sub-arctic fish. J Exp Mar Bio Ecol. 2008, 360: 47-55. 10.1016/j.jembe.2008.04.003.

    Article  Google Scholar 

  14. Montti L, Campanello PI, Goldstein G: Flowering, die-back and recovery of a semelparous woody bamboo in the Atlantic Forest. Acta Oecol. 2011, 37: 361-368. 10.1016/j.actao.2011.04.004.

    Article  Google Scholar 

  15. Futami K, Akimoto SI: Facultative second oviposition as an adaptation to egg loss in a semelparous crab spider. Ethology. 2005, 111: 1126-1138. 10.1111/j.1439-0310.2005.01126.x.

    Article  Google Scholar 

  16. Rocha F, Guerra A, González AF: A review of reproductive strategies in cephalopods. Biol Rev Camb Philos Soc. 2001, 76: 291-304. 10.1017/S1464793101005681.

    PubMed  CAS  Article  Google Scholar 

  17. Young TP: Semelparity and Iteroparity. Nat Educ Knowl. 2010, 3: 2-

    Google Scholar 

  18. Fritz R, Stamp N, Halverson T: Iteroparity and semelparity in insects. Am Nat. 1982, 120: 264-268. 10.1086/283987.

    Article  Google Scholar 

  19. Roff D: Optimizing development time in a seasonal environment: the “ups and downs” of clinal variation. Oecologia. 1980, 45: 202-208. 10.1007/BF00346461.

    Article  Google Scholar 

  20. Crespi B, Teo R: Comparative phylogenetic analysis of the evolution of semelparity and life history in salmonid fishes. Evolution. 2002, 56: 1008-1020. 10.1111/j.0014-3820.2002.tb01412.x.

    PubMed  Article  Google Scholar 

  21. Harper JL: 1977: Population biology of plants. 1977, London, UK: Academic Press

    Google Scholar 

  22. Bradshaw AD: Evolutionary significance of phenotypic plasticity in plants. Adv Genet. 1965, 13: 115-155.

    Article  Google Scholar 

  23. Schlichting C: The evolution of phenotypic plasticity in plants. Annu Rev Ecol Syst. 1986, 17: 667-698. 10.1146/annurev.es.17.110186.003315.

    Article  Google Scholar 

  24. Stearns S: The evolutionary significance of phenotypic plasticity. Bioscience. 1989, 39: 436-445. 10.2307/1311135.

    Article  Google Scholar 

  25. Hendry AP, Morbey YE, Berg OK, Wenburg JK: Adaptive variation in senescence: reproductive lifespan in a wild salmon population. Proc R Soc B. 2004, 271: 259-266. 10.1098/rspb.2003.2600.

    PubMed  PubMed Central  Article  Google Scholar 

  26. Morbey YE, Abrams PA: The interaction between reproductive lifespan and protandry in seasonal breeders. J Evol Biol. 2004, 17: 768-778. 10.1111/j.1420-9101.2004.00731.x.

    PubMed  CAS  Article  Google Scholar 

  27. Unwin M, Kinnison MT, Quinn TP: Exceptions to semelparity: postmaturation survival, morphology, and energetics of male chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci. 1999, 56: 1172-1181. 10.1139/f99-045.

    Article  Google Scholar 

  28. Cohen D: Maximizing final yield when growth is limited by time or by limiting resources. J Theor Biol. 1971, 33: 299-307. 10.1016/0022-5193(71)90068-3.

    PubMed  CAS  Article  Google Scholar 

  29. King D, Roughgarden J: Graded allocation between vegetative and reproductive growth for annual plants in growing seasons of random length. Theor Popul Biol. 1982, 22: 1-16. 10.1016/0040-5809(82)90032-6.

    Article  Google Scholar 

  30. King D, Roughgarden J: Energy allocation patterns of the California grassland annuals Plantago erecta and Clarkia rubicunda. Ecology. 1983, 64: 16-24. 10.2307/1937324.

    Article  Google Scholar 

  31. Amir S, Cohen D: Optimal reproductive efforts and the timing of reproduction of annual plants in randomly varying environments. J Theor Biol. 1990, 147: 17-42. 10.1016/S0022-5193(05)80250-4.

    Article  Google Scholar 

  32. Thomson FJ, Moles AT, Auld TD, Kingsford RT: Seed dispersal distance is more strongly correlated with plant height than with seed mass. J Ecol. 2011, 99: 1299-1307. 10.1111/j.1365-2745.2011.01867.x.

    Article  Google Scholar 

  33. Diggle PK: Architectural effects and the interpretation of patterns of fruit and seed development. Annu Rev Ecol Evol Syst. 1995, 26: 531-552. 10.1146/annurev.es.26.110195.002531.

    Article  Google Scholar 

  34. Ollerton J, Lack A: Relationships between flowering phenology, plant size and reproductive success in Lotus corniculatus (Fabaceae). Plant Ecol. 1998, 139: 35-47. 10.1023/A:1009798320049.

    Article  Google Scholar 

  35. Simons AM: Fluctuating natural selection accounts for the evolution of diversification bet hedging. Proc Biol Sci. 2009, 276: 1987-1992. 10.1098/rspb.2008.1920.

    PubMed  PubMed Central  Article  Google Scholar 

  36. Bolmgren KD, Cowan P: Time - size tradeoffs: a phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate flora. Oikos. 2008, 117: 424-429. 10.1111/j.2007.0030-1299.16142.x.

    Article  Google Scholar 

  37. Simons AM, Johnston MO: Suboptimal timing of reproduction in Lobelia inflata may be a conservative bet-hedging strategy. J Evol Biol. 2003, 16: 233-243. 10.1046/j.1420-9101.2003.00530.x.

    PubMed  CAS  Article  Google Scholar 

  38. Simons AM, Johnston MO: Environmental and genetic sources of diversification in the timing of seed germination: implications for the evolution of bet hedging. Evolution. 2006, 60: 2280-2292. 10.1111/j.0014-3820.2006.tb01865.x.

    PubMed  Article  Google Scholar 

  39. Simons AM, Johnston MO: Variation in seed traits of Lobelia inflata (Campanulaceae): sources and fitness consequences. Am J Bot. 2000, 87: 124-132. 10.2307/2656690.

    PubMed  CAS  Article  Google Scholar 

  40. Larsen S, Andreasen C: Light and heavy turfgrass seeds differ in germination percentage and mean germination thermal time. Crop Sci. 2004, 44: 1710-1720. 10.2135/cropsci2004.1710.

    Article  Google Scholar 

  41. Stanton ML: Seed size and emergence time within a stand of wild radish (Raphanus raphanistrum L.): the establishment of a fitness hierarchy. Oecologia. 1985, 67: 524-531. 10.1007/BF00790024.

    Article  Google Scholar 

  42. Zeineddine M, Jansen VA: To age, to die: parity, evolutionary tracking and Cole’s paradox. Evolution. 2009, 63: 1498-1507. 10.1111/j.1558-5646.2009.00630.x.

    PubMed  Article  Google Scholar 

  43. Simons AM, Johnston MO: Plasticity and the genetics of reproductive behaviour in the monocarpic perennial, Lobelia inflata (Indian tobacco). Heredity. 2000, 85: 356-365. 10.1046/j.1365-2540.2000.00760.x.

    PubMed  Article  Google Scholar 

  44. Hughes PW, Jaworski AF, Davis CS, Aitken SA, Simons AM: Development of polymorphic microsatellite markers for Indian Tobacco, Lobelia inflata (Campanulaceae). Appl Plant Sci. 2014, 2: 130096-

    Google Scholar 

  45. Simons AM: Selection for increased allocation to offspring number under environmental unpredictability. J Evol Biol. 2007, 20: 813-817. 10.1111/j.1420-9101.2006.01270.x.

    PubMed  CAS  Article  Google Scholar 

  46. Pinheiro J, Bates D: Mixed Effects Models in S and S-PLUS. 2000, New York, USA: Springer, 548-

    Book  Google Scholar 

  47. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS: Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol. 2009, 24: 127-135. 10.1016/j.tree.2008.10.008.

    PubMed  Article  Google Scholar 

  48. Venables WN, Dichmont CM: GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fish Res. 2004, 70: 319-337. 10.1016/j.fishres.2004.08.011.

    Article  Google Scholar 

  49. Hughes PW, Simons AM: Reproductive traits of Lobelia inflata. 2014, Data Dryad, https://datadryad.org/resource/doi:10.5061/dryad.2d218,

    Google Scholar 


Page 2

  • Policies
  • Accessibility
  • Press center
  • Support and Contact
  • Leave feedback
  • Careers

Follow BMC

  • BMC Twitter page
  • BMC Facebook page
  • BMC Weibo page