Why the rate of blood flow and blood pressure is higher in arterial walls as compared to veins *?

  1. Magder SA. The highs and lows of blood pressure: toward meaningful clinical targets in patients with shock. Crit Care Med. 2014;42(5):1241–51.

    Article  Google Scholar 

  2. Dobrin PB. Mechanical properties of arteries. Physiol Rev. 1978;58(2):397–460.

    Article  CAS  Google Scholar 

  3. Roach MR, Burton AC. The reason for the shape of the distensibility curves of arteries. Can J Biochem Physiol. 1957;35(8):681–90.

    Article  CAS  Google Scholar 

  4. Burton AC. The vascular bed. Physiology and biophysics of the circulation. Chicago: Year Book Medical Publishers Inc.; 1965. p. 61–92.

    Google Scholar 

  5. Burton AC. On the physical equilibrium of small blood vessels. Am J Physiol. 1951;164:319–29.

    CAS  PubMed  Google Scholar 

  6. Azuma T, Oka S. Mechanical equilibrium of blood vessel walls. Am J Physiol. 1971;221:1210–318.

    Google Scholar 

  7. Oka S, Azuma T. Physical theory of tension in thick-walled blood vessels in equilibrium. Biorheology. 1970;7:109–17.

    Article  CAS  Google Scholar 

  8. Burton AC. Total fluid energy, gravitational potential energy, effects of posture. physiology and biophysics of the circulation: an introductory text. Chicago: Year Book Medical Publishers Inc.; 1965. p. 95–111.

    Google Scholar 

  9. Magder S. Is all on the level? Hemodynamics during supine versus prone ventilation. Am J Respir Crit Care Med. 2013;188(12):1390–1.

    Article  Google Scholar 

  10. Magder SA. Pressure-flow relations of diaphragm and vital organs with nitroprusside-induced vasodilation. J Appl Physiol. 1986;61:409–16.

    Article  CAS  Google Scholar 

  11. Permutt S, Riley S. Hemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol. 1963;18(5):924–32.

    Article  CAS  Google Scholar 

  12. Sylvester JL, Traystman RJ, Permutt S. Effects of hypoxia on the closing pressure of the canine systemic arterial circulation. Circ Res. 1981;49:980–7.

    Article  CAS  Google Scholar 

  13. Kato R, Pinsky MR. Personalizing blood pressure management in septic shock. Ann Intensive Care. 2015;5(1):41.

    Article  Google Scholar 

  14. Magder S. Starling resistor versus compliance. Which explains the zero-flow pressure of a dynamic arterial pressure-flow relation? Circ Res. 1990;67:209–20.

    Article  CAS  Google Scholar 

  15. Bellamy RF. Diastolic coronary artery pressure-flow relations in the dog. Circ Res. 1978;43(1):92–101.

    Article  CAS  Google Scholar 

  16. Shrier I, Hussain SNA, Magder S. Effect of carotid sinus stimulation on resistance and critical closing pressure of the canine hindlimb. Am J Physiol. 1993;264:H1560–H6.

    CAS  PubMed  Google Scholar 

  17. Shrier I, Magder S. NG-nitro-L-arginine and phenylephrine have similar effects on the vascular waterfall in the canine hindlimb. Am J Physiol. 1995;78(2):478–82.

    CAS  Google Scholar 

  18. Shrier I, Magder S. Response of arterial resistance and critical closing pressure to change in perfusion pressure in canine hindlimb. Am J Physiol. 1993;265:H1939–H45.

    CAS  PubMed  Google Scholar 

  19. Shrier I, Magder S. The effects of nifedipine on the vascular waterfall and arterial resistance in the canine hindlimb. Am J Physiol. 1995;268:H372–H6.

    Google Scholar 

  20. Shrier I, Magder S. Effects of adenosine on the pressure-flow relationships in an in vitro model of compartment syndrome. J Appl Physiol. 1997;82(3):755–9.

    Article  CAS  Google Scholar 

  21. Sagawa K. The ventricular pressure-volume diagram revisited. Circ Res. 1978;43:677–87.

    Article  CAS  Google Scholar 

  22. Suga H, Saeki Y, Sagawa K. End-systolic force-length relationship of nonexcised canine papillary muscle. Am J Phys. 1977;233(6):H711–H7.

    CAS  Google Scholar 

  23. Guarracino F, Baldassarri R, Pinsky MR. Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit Care. 2013;17(2):213.

    Article  Google Scholar 

  24. Wang JJ, O'Brien AB, Shrive NG, Parker KH, Tyberg JV. Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. Am J Physiol Heart Circ Physiol. 2003;284(4):H1358–68.

    Article  CAS  Google Scholar 

  25. Monge Garcia MI, Gil Cano A, Gracia Romero M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit Care. 2011;15(1):R15.

    Article  Google Scholar 

  26. Cecconi M, Monge Garcia MI, Gracia Romero M, Mellinghoff J, Caliandro F, Grounds RM, et al. The use of pulse pressure variation and stroke volume variation in spontaneously breathing patients to assess dynamic arterial elastance and to predict arterial pressure response to fluid administration. Anesth Analg. 2015;120(1):76–84.

    Article  Google Scholar 

  27. Garcia MI, Romero MG, Cano AG, Aya HD, Rhodes A, Grounds RM, et al. Dynamic arterial elastance as a predictor of arterial pressure response to fluid administration: a validation study. Crit Care. 2014;18(6):626.

    Article  Google Scholar 

  28. Pinsky MR. Defining the boundaries of bedside pulse contour analysis: dynamic arterial elastance. Crit Care. 2011;15(1):120.

    Article  Google Scholar 

  29. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Phys. 1983;245(5 Pt 1):H773–80.

    CAS  Google Scholar 

  30. Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res. 1985;56(4):586–95.

    Article  CAS  Google Scholar 

  31. Monge Garcia MI, Guijo Gonzalez P, Gracia Romero M, Gil Cano A, Rhodes A, Grounds RM, et al. Effects of arterial load variations on dynamic arterial elastance: an experimental study. Br J Anaesth. 2017;118(6):938–46.

    Article  CAS  Google Scholar 

  32. Nakashima T, Tanikawa J. A study of human aortic distensibility with relation to atherosclerosis and aging. Angiology. 1971;22(8):477–90.

    Article  CAS  Google Scholar 

  33. Maughan WL, Sunagawa K, Burkhoff D, Graves WL Jr, Hunter WC, Sagawa K. Effect of heart rate on the canine end-systolic pressure-volume relationship. Circulation. 1985;72(3):654–9.

    Article  CAS  Google Scholar 

  34. Magder S, Guerard B. Heart-lung interactions and pulmonary buffering: lessons from a computational modeling study. RespirPhysiol Neurobiol. 2012;182(2–3):60–70.

    Article  Google Scholar 

  35. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993;329(27):2002–12.

    Article  CAS  Google Scholar 

  36. Johnson PC. Autoregulation of blood flow. Circ Res. 1986;59:483–95.

    Article  CAS  Google Scholar 

  37. Magder S. Phenylephrine and tangible bias. Anesthesia Analgesia. 2011;113(2):211–3.

    Article  Google Scholar 

  38. Hainsworth R, Karim F, McGregor KH, Rankin AJ. Effects of stimulation of aortic chemoreceptors on abdominal vascular resistance and capacitance in anaesthetized dogs. J Physiol. 1983;334:421–31.

    Article  CAS  Google Scholar 

  39. Deschamps A, Magder S. Baroreflex control of regional capacitance and blood flow distribution with or without alpha adrenergic blockade. J Appl Physiol. 1992;263:H1755–H63.

    CAS  Google Scholar 

  40. Magder S. Volume and its relationship to cardiac output and venous return. Crit Care. 2016;20:271.

    Article  CAS  Google Scholar 

  41. Krogh A. The regulation of the supply of blood to the right heart. Skand Arch Physiol. 1912;27:227–48.

    Article  Google Scholar 

  42. Thiele RH, Nemergut EC, Lynch C III. The physiologic implications of isolated alpha 1 adrenergic stimulation. Anesth Analg. 2011;113(2):284–96.

    Article  CAS  Google Scholar 

  43. Datta P, Magder S. Hemodynamic response to norepinephrine with and without inhibition of nitric oxide synthase in porcine endotoxemia. Am J Resp Crit Care Med. 1999;160(6):1987–93.

    Article  CAS  Google Scholar 

  44. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6.

    Article  CAS  Google Scholar 

  45. Moncada S. The L-arginine:nitric oxide pathway. Acta Physiol Scand. 1992;145:201–27.

    Article  CAS  Google Scholar 


Page 2

Effect of age and initial volume on thoracic aortic elastance. The slopes of the lines are elastance. The right upper insert shows the increase in circumferential tension versus increases in aortic circumference in percent for age < 18 to > 80 years [33]. The lower left shows a schematic pressure–volume relationship for the aorta. The boxes represent stroke volumes. The same stroke volume A starting from the same initial volume produces increasing pulse pressures depending upon the shape and position of the start of the stroke volume. The stroke volume B is the same size as in A but starts at a higher initial volume and produces a much larger pulse pressure