What treatment is being compared to the control in the experiment?

Simply Psychology's content is for informational and educational purposes only. Our website is not intended to be a substitute for professional medical advice, diagnosis, or treatment.

© Simply Scholar Ltd - All rights reserved

The problem with this experiment is that the farmer has neglected to control for the effect of the differences in irrigation. This leads to experimental bias, the favoring of certain outcomes over others. To avoid this bias, the farmer should have tested the new fertilizer in identical conditions to the control group, which did not receive the treatment. Without controlling for outside variables, the farmer cannot conclude that it was the effect of the fertilizer, and not the irrigation system, that produced a better yield of crops.

Another type of bias that is most apparent in medical experiments is the placebo effect. Since many patients are confident that a treatment will positively affect them, they react to a control treatment which actually has no physical affect at all, such as a sugar pill. For this reason, it is important to include control, or placebo, groups in medical experiments to evaluate the difference between the placebo effect and the actual effect of the treatment.

The simple existence of placebo groups is sometimes not sufficient for avoiding bias in experiments. If members of the placebo group have any knowledge (or suspicion) that they are not being given an actual treatment, then the effect of the treatment cannot be accurately assessed. For this reason, double-blind experiments are generally preferable. In this case, neither the experimenters nor the subjects are aware of the subjects' group status. This eliminates the possibility that the experimenters will treat the placebo group differently from the treatment group, further reducing experimental bias.

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

A control group in an experiment does not receive the treatment. Instead, it serves as a comparison group for the treatments. Researchers compare the results of a treatment group to the control group to determine the effect size, also known as the treatment effect.

What treatment is being compared to the control in the experiment?
What treatment is being compared to the control in the experiment?
A control group is important because it is a benchmark that allows scientists to draw conclusions about the treatment’s effectiveness.

Imagine that a treatment group receives a vaccine and it has an infection rate of 10%. By itself, you don’t know if that’s an improvement. However, if you also have an unvaccinated control group with an infection rate of 20%, you know the vaccine improved the outcome by 10 percentage points.

By serving as a basis for comparison, the control group reveals the treatment’s effect.

Related post: Effect Sizes in Statistics

Using Control Groups in Experiments

Most experiments include a control group and at least one treatment group. In an ideal experiment, the subjects in all groups start with the same overall characteristics except that those in the treatment groups receive a treatment. When the groups are otherwise equivalent before treatment begins, you can attribute differences after the experiment to the treatments.

Randomized controlled trials (RCTs) assign subjects to the treatment and control groups randomly. This process helps ensure the groups are comparable when treatment begins. Consequently, treatment effects are the most likely cause for differences between groups at the end of the study. Statisticians consider RCTs to be the gold standard. To learn more about this process, read my post, Random Assignment in Experiments.

Observational studies either can’t use randomized groups or don’t use them because they’re too costly or problematic. In these studies, the characteristics of the control group might be different from the treatment groups at the start of the study, making it difficult to estimate the treatment effect accurately at the end. Case-Control studies are a specific type of observational study that uses a control group.

For these types of studies, analytical methods and design choices, such as regression analysis and matching, can help statistically mitigate confounding variables. Matching involves selecting participants with similar characteristics. For each participant in the treatment group, the researchers find a subject with comparable traits to include in the control group. To learn more about this type of study and matching, read my post, Observational Studies Explained.

Control groups are key way to increase the internal validity of an experiment. To learn more, read my post about internal and external validity.

Randomized versus non-randomized control groups are just several of the different types you can have. We’ll look at more kinds later!

Related posts: When to Use Regression Analysis

Example of a Control Group

Suppose we want to determine whether regular vitamin consumption affects the risk of dying. Our experiment has the following two experimental groups:

  • Control group: Does not consume vitamin supplements
  • Treatment group: Regularly consumes vitamin supplements.

In this experiment, we randomly assign subjects to the two groups. Because we use random assignment, the two groups start with similar characteristics, including healthy habits, physical attributes, medical conditions, and other factors affecting the outcome. The intentional introduction of vitamin supplements in the treatment group is the only systematic difference between the groups.

After the experiment is complete, we compare the death risk between the treatment and control groups. Because the groups started roughly equal, we can reasonably attribute differences in death risk at the end of the study to vitamin consumption. By having the control group as the basis of comparison, the effect of vitamin consumption becomes clear!

Types of Control Groups

Researchers can use different types of control groups in their experiments. Earlier, you learned about the random versus non-random kinds, but there are other variations. You can use various types depending on your research goals, constraints, and ethical issues, among other things.

Negative Control Group

The group introduces a condition that the researchers expect won’t have an effect. This group typically receives no treatment. These experiments compare the effectiveness of the experimental treatment to no treatment. For example, in a vaccine study, a negative control group does not get the vaccine.

Positive Control Group

Positive control groups typically receive a standard treatment that science has already proven effective. These groups serve as a benchmark for the performance of a conventional treatment. In this vein, experiments with positive control groups compare the effectiveness of a new treatment to a standard one.

For example, an old blood pressure medicine can be the treatment in a positive control group, while the treatment group receives the new, experimental blood pressure medicine. The researchers want to determine whether the new treatment is better than the previous treatment.

In these studies, subjects can still take the standard medication for their condition, a potentially critical ethics issue.

Placebo Control Group

Placebo control groups introduce a treatment lookalike that will not affect the outcome. Standard examples of placebos are sugar pills and saline solution injections instead of genuine medicine. The key is that the placebo looks like the actual treatment. Researchers use this approach when the recipients’ belief that they’re receiving the treatment might influence their outcomes. By using placebos, the experiment controls for these psychological benefits. The researchers want to determine whether the treatment performs better than the placebo effect.

Blinded Control Groups

If the subject’s awareness of their group assignment might affect their outcomes, the researchers can use a blinded experimental design that does not tell participants their group membership. Typically, blinded control groups will receive placebos, as described above. In a double-blinded control group, both subjects and researchers don’t know group assignments.

Waitlist Control Group

When there is a waitlist to receive a new treatment, those on the waitlist can serve as a control group until they receive treatment. This type of design avoids ethical concerns about withholding a better treatment until the study finishes. This design can be a variation of a positive control group because the subjects might be using conventional medicines while on the waitlist.

Historical Control Group

When historical data for a comparison group exists, it can serve as a control group for an experiment. The group doesn’t exist in the study, but the researchers compare the treatment group to the existing data. For example, the researchers might have infection rate data for unvaccinated individuals to compare to the infection rate among the vaccinated participants in their study. This approach allows everyone in the experiment to receive the new treatment. However, differences in place, time, and other circumstances can reduce the value of these comparisons. In other words, other factors might account for the apparent effects.

Which statement best describes the difference in the distribution of cells in the treated sample compared to the control sample?

Which statement best describes the difference(s) in the distribution of cells in the treated sample compared to the control sample? The treated cells are mostly in the G1 phase (region A), but in the control sample, there are peaks of cells in both G1 and G2 (region C).

What happens at each phase of the cell cycle?

The cell cycle has two major phases: interphase and the mitotic phase (Figure 1). During interphase, the cell grows and DNA is replicated. During the mitotic phase, the replicated DNA and cytoplasmic contents are separated, and the cell divides.

Which of the following correctly matches a phase of the cell cycle with its description?

Answer and Explanation: The correct answer for this question is c. G1: follows cell division. G1 is the first stage of interphase and is the stage that a recently formed cell...

Why is it difficult to observe individual chromosomes during interphase?

Individual chromosomes are more difficult to see during interphase than during because they are not compressed at this point of the cell cycle. Their diffuse state during interphase allows the proteins involved in transcribing DNA to access the DNA.