The nurse reviews the laboratory results of a laboring client who is requesting epidural anesthesia

1. Caton D. John Snow’s practice of obstetric anesthesia. Anesthesiology. 2000;92:247–52. [PubMed] [Google Scholar]

2. Caton D. The influence of social values on obstetric anesthesia. AMA J Ethics. 2015;17:253–7. [PubMed] [Google Scholar]

3. Mendelson CL. The aspiration of stomach contents into the lungs during obstetric anesthesia. Am J Obstet Gynecol. 1946;52:191–205. [PubMed] [Google Scholar]

4. Thorp JA, Hu DH, Albin RM, McNitt J, Meyer BA, Cohen GR, Yeast JD. The effect of intrapartum epidural analgesia on nulliparous labor: a randomized, controlled, prospective trial. Am J Obstet Gynecol. 1993;169:851–8. [PubMed] [Google Scholar]

5. Hawkins JL, Chang J, Palmer SK, Gibbs CP, Callaghan WM. Anesthesia-related maternal mortality in the United States: 1979–2002. Obstet Gynecol. 2011;117:69–74. [PubMed] [Google Scholar]

6. Eltzschig HK, Lieberman ES, Camann WR. Regional anesthesia and analgesia for labor and delivery. N Engl J Med. 2003;348:319–32. [PubMed] [Google Scholar]

7. Practice Guidelines for Obstetric Anesthesia: An Updated Report by the American Society of Anesthesiologists Task Force on Obstetric Anesthesia and the Society for Obstetric Anesthesia and Perinatology. Anesthesiology. 2016:270–300. [PubMed] [Google Scholar]

8. Abrao KC, Francisco RP, Miyadahira S, Cicarelli DD, Zugaib M. Elevation of uterine basal tone and fetal heart rate abnormalities after labor analgesia: a randomized controlled trial. Obstet Gynecol. 2009;113:41–7. [PubMed] [Google Scholar]

9. Simmons SW, Taghizadeh N, Dennis AT, Hughes D, Cyna AM. Combined spinal-epidural versus epidural analgesia in labour. Cochrane Database Syst Rev. 2012;10:CD003401. [PMC free article] [PubMed] [Google Scholar]

10. Booth JM, Pan JC, Ross VH, Russell GB, Harris LC, Pan PH. Combined Spinal Epidural Technique for Labor Analgesia Does Not Delay Recognition of Epidural Catheter Failures: A Single-center Retrospective Cohort Survival Analysis. Anesthesiology. 2016;125:516–24. [PubMed] [Google Scholar]

11. Bauer ME, Kountanis JA, Tsen LC, Greenfield ML, Mhyre JM. Risk factors for failed conversion of labor epidural analgesia to cesarean delivery anesthesia: a systematic review and meta-analysis of observational trials. Int J Obstet Anesth. 2012;21:294–309. [PubMed] [Google Scholar]

12. Riley ET, Cohen SE, Macario A, Desai JB, Ratner EF. Spinal versus epidural anesthesia for cesarean section: a comparison of time efficiency, costs, charges, and complications. Anesth Analg. 1995;80:709–12. [PubMed] [Google Scholar]

13. Heesen M, Van de Velde M, Klohr S, Lehberger J, Rossaint R, Straube S. Meta-analysis of the success of block following combined spinal-epidural vs epidural analgesia during labour. Anaesthesia. 2014;69:64–71. [PubMed] [Google Scholar]

14. Cappiello E, O’Rourke N, Segal S, Tsen LC. A randomized trial of dural puncture epidural technique compared with the standard epidural technique for labor analgesia. Anesth Analg. 2008;107:1646–51. [PubMed] [Google Scholar]

15. Chau A, Bibbo C, Huang CC, Elterman KG, Cappiello EC, Robinson JN, Tsen LC. Dural Puncture Epidural Technique Improves Labor Analgesia Quality With Fewer Side Effects Compared With Epidural and Combined Spinal Epidural Techniques: A Randomized Clinical Trial. Anesth Analg. 2017;124:560–569. [PubMed] [Google Scholar]

16. Wong CA. Advances in labor analgesia. Int J Womens Health. 2010;1:139–54. [PMC free article] [PubMed] [Google Scholar]

17. Sultan P, Murphy C, Halpern S, Carvalho B. The effect of low concentrations versus high concentrations of local anesthetics for labour analgesia on obstetric and anesthetic outcomes: a meta-analysis. Can J Anaesth. 2013;60:840–54. [PubMed] [Google Scholar]

18. Wong CA. In: Epidural and Spinal Analgesia/Anesthesia for Labor and Vaginal Delivery, Obstetric Anesthesia: Principles and Practice. Chestnut DH, editor. Mosby: 2014. p. 490. [Google Scholar]

19. Ngan Kee WD, Khaw KS, Ng FF, Ng KK, So R, Lee A. Synergistic interaction between fentanyl and bupivacaine given intrathecally for labor analgesia. Anesthesiology. 2014;120:1126–36. [PubMed] [Google Scholar]

20. Bremerich DH, Waibel HJ, Mierdl S, Meininger D, Byhahn C, Zwissler BC, Ackermann HH. Comparison of continuous background infusion plus demand dose and demand-only parturient-controlled epidural analgesia (PCEA) using ropivacaine combined with sufentanil for labor and delivery. Int J Obstet Anesth. 2005;14:114–20. [PubMed] [Google Scholar]

21. Missant C, Teunkenst A, Vandermeersch E, Van de Velde M. Patient-controlled epidural analgesia following combined spinal-epidural analgesia in labour: the effects of adding a continuous epidural infusion. Anaesth Intensive Care. 2005;33:452–6. [PubMed] [Google Scholar]

22. Wong CA, McCarthy RJ, Hewlett B. The effect of manipulation of the programmed intermittent bolus time interval and injection volume on total drug use for labor epidural analgesia: a randomized controlled trial. Anesth Analg. 2011;112:904–11. [PubMed] [Google Scholar]

23. Capogna G, Camorcia M, Stirparo S, Farcomeni A. Programmed intermittent epidural bolus versus continuous epidural infusion for labor analgesia: the effects on maternal motor function and labor outcome. A randomized double-blind study in nulliparous women. Anesth Analg. 2011;113:826–31. [PubMed] [Google Scholar]

24. McKenzie CP, Cobb B, Riley ET, Carvalho B. Programmed intermittent epidural boluses for maintenance of labor analgesia: an impact study. Int J Obstet Anesth. 2016;26:32–8. [PubMed] [Google Scholar]

25. George RB, Allen TK, Habib AS. Intermittent epidural bolus compared with continuous epidural infusions for labor analgesia: a systematic review and meta-analysis. Anesth Analg. 2013;116:133–44. [PubMed] [Google Scholar]

26. Thornton JG, Capogna G. Reducing likelihood of instrumental delivery with epidural anaesthesia. Lancet. 2001;358:2. [PubMed] [Google Scholar]

27. Betti F, Carvalho B, Riley ET. Intrathecal Migration of an Epidural Catheter While Using a Programmed Intermittent Epidural Bolus Technique for Labor Analgesia Maintenance: A Case Report. A A Case Rep. 2017 [PubMed] [Google Scholar]

28. Carvalho B, George RB, Cobb B, McKenzie C, Riley ET. Implementation of Programmed Intermittent Epidural Bolus for the Maintenance of Labor Analgesia. Anesth Analg. 2016;123:965–71. [PubMed] [Google Scholar]

29. Markley JC, Rollins MD. Non-Neuraxial Labor Analgesia: Options. Clin Obstet Gynecol. 2017;60:350–364. [PubMed] [Google Scholar]

30. Stocki D, Matot I, Einav S, Eventov-Friedman S, Ginosar Y, Weiniger CF. A randomized controlled trial of the efficacy and respiratory effects of patient-controlled intravenous remifentanil analgesia and patient-controlled epidural analgesia in laboring women. Anesth Analg. 2014;118:589–97. [PubMed] [Google Scholar]

31. Tveit TO, Halvorsen A, Seiler S, Rosland JH. Efficacy and side effects of intravenous remifentanil patient-controlled analgesia used in a stepwise approach for labour: an observational study. Int J Obstet Anesth. 2013;22:19–25. [PubMed] [Google Scholar]

32. Douma MR, Verwey RA, Kam-Endtz CE, van der Linden PD, Stienstra R. Obstetric analgesia: a comparison of patient-controlled meperidine, remifentanil, and fentanyl in labour. Br J Anaesth. 2010;104:209–15. [PubMed] [Google Scholar]

33. Weiniger CF, Carvalho B, Stocki D, Einav S. Analysis of Physiological Respiratory Variable Alarm Alerts Among Laboring Women Receiving Remifentanil. Anesth Analg. 2017;124:1211–1218. [PubMed] [Google Scholar]

34. Saravanakumar K, Garstang JS, Hasan K. Intravenous patient-controlled analgesia for labour: a survey of UK practice. Int J Obstet Anesth. 2007;16:221–5. [PubMed] [Google Scholar]

35. Aaronson J, Abramovitz S, Smiley R, Tangel V, Landau R. A Survey of Intravenous Remifentanil Use for Labor Analgesia at Academic Medical Centers in the United States. Anesth Analg. 2017;124:1208–1210. [PubMed] [Google Scholar]

36. Liu ZQ, Chen XB, Li HB, Qiu MT, Duan T. A comparison of remifentanil parturient-controlled intravenous analgesia with epidural analgesia: a meta-analysis of randomized controlled trials. Anesth Analg. 2014;118:598–603. [PubMed] [Google Scholar]

37. Marwah R, Hassan S, Carvalho JC, Balki M. Remifentanil versus fentanyl for intravenous patient-controlled labour analgesia: an observational study. Can J Anaesth. 2012;59:246–54. [PubMed] [Google Scholar]

38. Likis FE, Andrews JC, Collins MR, Lewis RM, Seroogy JJ, Starr SA, Walden RR, McPheeters ML. Nitrous oxide for the management of labor pain: a systematic review. Anesth Analg. 2014;118:153–67. [PubMed] [Google Scholar]

39. Attanasio L, Kozhimannil KB, Jou J, McPherson ME, Camann W. Women’s Experiences with Neuraxial Labor Analgesia in the Listening to Mothers II Survey: A Content Analysis of Open-Ended Responses. Anesth Analg. 2015;121:974–80. [PMC free article] [PubMed] [Google Scholar]

40. King TL, Wong CA. Nitrous oxide for labor pain: is it a laughing matter? Anesth Analg. 2014;118:12–4. [PubMed] [Google Scholar]

41. Collado V, Nicolas E, Faulks D, Hennequin M. A review of the safety of 50% nitrous oxide/oxygen in conscious sedation. Expert Opin Drug Saf. 2007;6:559–71. [PubMed] [Google Scholar]

42. Rooks JP. Safety and risks of nitrous oxide labor analgesia: a review. J Midwifery Womens Health. 2011;56:557–65. [PubMed] [Google Scholar]

43. Sanders RD, Weimann J, Maze M. Biologic effects of nitrous oxide: a mechanistic and toxicologic review. Anesthesiology. 2008;109:707–22. [PubMed] [Google Scholar]

44. Landau R, Cahana A, Smiley RM, Antonarakis SE, Blouin JL. Genetic variability of mu-opioid receptor in an obstetric population. Anesthesiology. 2004;100:1030–3. [PubMed] [Google Scholar]

45. Camorcia M, Capogna G, Stirparo S, Berritta C, Blouin JL, Landau R. Effect of mu-opioid receptor A118G polymorphism on the ED50 of epidural sufentanil for labor analgesia. Int J Obstet Anesth. 2012;21:40–4. [PubMed] [Google Scholar]

46. Sia AT, Lim Y, Lim EC, Goh RW, Law HY, Landau R, Teo YY, Tan EC. A118G single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology. 2008;109:520–6. [PubMed] [Google Scholar]

47. Walter C, Lotsch J. Meta-analysis of the relevance of the OPRM1 118A>G genetic variant for pain treatment. Pain. 2009;146:270–5. [PubMed] [Google Scholar]

48. Terkawi AS, Jackson WM, Hansoti S, Tabassum R, Flood P. Polymorphism in the ADRB2 gene explains a small portion of intersubject variability in pain relative to cervical dilation in the first stage of labor. Anesthesiology. 2014;121:140–8. [PubMed] [Google Scholar]

49. Terkawi AS, Jackson WM, Thiet MP, Hansoti S, Tabassum R, Flood P. Oxytocin and catechol-O-methyltransferase receptor genotype predict the length of the first stage of labor. Am J Obstet Gynecol. 2012;207:184e1–8. [PubMed] [Google Scholar]

50. Goetzinger KR, Macones GA. Operative vaginal delivery: current trends in obstetrics. Womens Health (Lond) 2008;4:281–90. [PubMed] [Google Scholar]

51. Anim-Somuah M, Smyth RM, Jones L. Epidural versus non-epidural or no analgesia in labour. Cochrane Database Syst Rev. 2011:CD000331. [PubMed] [Google Scholar]

52. Comparative Obstetric Mobile Epidural Trial Study Group UK. Effect of low-dose mobile versus traditional epidural techniques on mode of delivery: a randomised controlled trial. Lancet. 2001;358:19–23. [PubMed] [Google Scholar]

53. Wassen MM, Hukkelhoven CW, Scheepers HC, Smits LJ, Nijhuis JG, Roumen FJ. Epidural analgesia and operative delivery: a ten-year population-based cohort study in The Netherlands. Eur J Obstet Gynecol Reprod Biol. 2014;183:125–31. [PubMed] [Google Scholar]

54. Segal S, Su M, Gilbert P. The effect of a rapid change in availability of epidural analgesia on the cesarean delivery rate: a meta-analysis. Am J Obstet Gynecol. 2000;183:974–8. [PubMed] [Google Scholar]

55. Ramin SM, Gambling DR, Lucas MJ, Sharma SK, Sidawi JE, Leveno KJ. Randomized trial of epidural versus intravenous analgesia during labor. Obstet Gynecol. 1995;86:783–9. [PubMed] [Google Scholar]

56. Bofill JA, Vincent RD, Ross EL, Martin RW, Norman PF, Werhan CF, Morrison JC. Nulliparous active labor, epidural analgesia, and cesarean delivery for dystocia. Am J Obstet Gynecol. 1997;177:1465–70. [PubMed] [Google Scholar]

57. Halpern SH, Leighton BL, Ohlsson A, Barrett JF, Rice A. Effect of epidural vs parenteral opioid analgesia on the progress of labor: a meta-analysis. JAMA. 1998;280:2105–10. [PubMed] [Google Scholar]

58. Sharma SK, Leveno KJ. Update: Epidural Analgesia does not increase csarean births. Curr Anesthesiol Rep. 2000;2:18–24. [Google Scholar]

59. Sharma SK, Alexander JM, Messick G, Bloom SL, McIntire DD, Wiley J, Leveno KJ. Cesarean delivery: a randomized trial of epidural analgesia versus intravenous meperidine analgesia during labor in nulliparous women. Anesthesiology. 2002;96:546–51. [PubMed] [Google Scholar]

60. Yancey MK, Pierce B, Schweitzer D, Daniels D. Observations on labor epidural analgesia and operative delivery rates. Am J Obstet Gynecol. 1999;180:353–9. [PubMed] [Google Scholar]

61. Fogel ST, Shyken JM, Leighton BL, Mormol JS, Smeltzer JS. Epidural labor analgesia and the incidence of cesarean delivery for dystocia. Anesth Analg. 1998;87:119–23. [PubMed] [Google Scholar]

62. Gribble RK, Meier PR. Effect of epidural analgesia on the primary cesarean rate. Obstet Gynecol. 1991;78:231–4. [PubMed] [Google Scholar]

63. Seyb ST, Berka RJ, Socol ML, Dooley SL. Risk of cesarean delivery with elective induction of labor at term in nulliparous women. Obstet Gynecol. 1999;94:600–7. [PubMed] [Google Scholar]

64. Wong CA, Scavone BM, Peaceman AM, McCarthy RJ, Sullivan JT, Diaz NT, Yaghmour E, Marcus RJ, Sherwani SS, Sproviero MT, Yilmaz M, Patel R, Robles C, Grouper S. The risk of cesarean delivery with neuraxial analgesia given early versus late in labor. N Engl J Med. 2005;352:655–65. [PubMed] [Google Scholar]

65. Chestnut DH, McGrath JM, Vincent RD, Jr, Penning DH, Choi WW, Bates JN, McFarlane C. Does early administration of epidural analgesia affect obstetric outcome in nulliparous women who are in spontaneous labor? Anesthesiology. 1994;80:1201–8. [PubMed] [Google Scholar]

66. Chestnut DH, Vincent RD, Jr, McGrath JM, Choi WW, Bates JN. Does early administration of epidural analgesia affect obstetric outcome in nulliparous women who are receiving intravenous oxytocin? Anesthesiology. 1994;80:1193–200. [PubMed] [Google Scholar]

67. Luxman D, Wolman I, Groutz A, Cohen JR, Lottan M, Pauzner D, David MP. The effect of early epidural block administration on the progression and outcome of labor. Int J Obstet Anesth. 1998;7:161–4. [PubMed] [Google Scholar]

68. Ohel G, Gonen R, Vaida S, Barak S, Gaitini L. Early versus late initiation of epidural analgesia in labor: does it increase the risk of cesarean section? A randomized trial. Am J Obstet Gynecol. 2006;194:600–5. [PubMed] [Google Scholar]

69. Wang F, Shen X, Guo X, Peng Y, Gu X Labor Analgesia Examining G. Epidural analgesia in the latent phase of labor and the risk of cesarean delivery: a five-year randomized controlled trial. Anesthesiology. 2009;111:871–80. [PubMed] [Google Scholar]

70. Wong CA, McCarthy RJ, Sullivan JT, Scavone BM, Gerber SE, Yaghmour EA. Early compared with late neuraxial analgesia in nulliparous labor induction: a randomized controlled trial. Obstet Gynecol. 2009;113:1066–74. [PubMed] [Google Scholar]

71. Alexander JM, Sharma SK, McIntire DD, Wiley J, Leveno KJ. Intensity of labor pain and cesarean delivery. Anesth Analg. 2001;92:1524–8. [PubMed] [Google Scholar]

72. Hess PE, Pratt SD, Soni AK, Sarna MC, Oriol NE. An association between severe labor pain and cesarean delivery. Anesth Analg. 2000;90:881–6. [PubMed] [Google Scholar]

73. Panni MK, Segal S. Local anesthetic requirements are greater in dystocia than in normal labor. Anesthesiology. 2003;98:957–63. [PubMed] [Google Scholar]

74. Sharma SK, McIntire DD, Wiley J, Leveno KJ. Labor analgesia and cesarean delivery: an individual patient meta-analysis of nulliparous women. Anesthesiology. 2004;100:142–8. discussion 6A. [PubMed] [Google Scholar]

75. Wang TT, Sun S, Huang SQ. Effects of Epidural Labor Analgesia With Low Concentrations of Local Anesthetics on Obstetric Outcomes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Anesth Analg. 2016 [PubMed]

76. Cheek TG, Samuels P, Miller F, Tobin M, Gutsche BB. Normal saline i.v. fluid load decreases uterine activity in active labour. Br J Anaesth. 1996;77:632–5. [PubMed] [Google Scholar]

77. Rahm VA, Hallgren A, Hogberg H, Hurtig I, Odlind V. Plasma oxytocin levels in women during labor with or without epidural analgesia: a prospective study. Acta Obstet Gynecol Scand. 2002;81:1033–9. [PubMed] [Google Scholar]

78. Van de Velde M, Teunkens A, Hanssens M, Vandermeersch E, Verhaeghe J. Intrathecal sufentanil and fetal heart rate abnormalities: a double-blind, double placebo-controlled trial comparing two forms of combined spinal epidural analgesia with epidural analgesia in labor. Anesth Analg. 2004;98:1153–9. table of contents. [PubMed] [Google Scholar]

79. Pan PH, Eisenach JC. In: The Pain of Childbirth and Its Effect on the Mother and the Fetus, Chestnut’s Obstetric Anesthesia: Principles and Practice. 5. Chestnut DH, editor. Philadelphia, PA: Elsevier Saunders; 2014. p. 421. [Google Scholar]

80. Cheng YW, Shaffer BL, Nicholson JM, Caughey AB. Second stage of labor and epidural use: a larger effect than previously suggested. Obstet Gynecol. 2014;123:527–35. [PubMed] [Google Scholar]

81. Zhang J, Landy HJ, Branch DW, Burkman R, Haberman S, Gregory KD, Hatjis CG, Ramirez MM, Bailit JL, Gonzalez-Quintero VH, Hibbard JU, Hoffman MK, Kominiarek M, Learman LA, Van Veldhuisen P, Troendle J, Reddy UM Consortium on Safe L. Contemporary patterns of spontaneous labor with normal neonatal outcomes. Obstet Gynecol. 2010;116:1281–7. [PMC free article] [PubMed] [Google Scholar]

82. Derham RJ, Crowhurst J, Crowther C. The second stage of labour: durational dilemmas. Aust N Z J Obstet Gynaecol. 1991;31:31–6. [PubMed] [Google Scholar]

83. Menticoglou SM, Manning F, Harman C, Morrison I. Perinatal outcome in relation to second-stage duration. Am J Obstet Gynecol. 1995;173:906–12. [PubMed] [Google Scholar]

84. Saunders NS, Paterson CM, Wadsworth J. Neonatal and maternal morbidity in relation to the length of the second stage of labour. Br J Obstet Gynaecol. 1992;99:381–5. [PubMed] [Google Scholar]

85. Grobman WA, Bailit J, Lai Y, Reddy UM, Wapner RJ, Varner MW, Caritis SN, Prasad M, Tita AT, Saade G, Sorokin Y, Rouse DJ, Blackwell SC, Tolosa JE Eunice Kennedy Shriver National Institute of Child H, Human Development Maternal-Fetal Medicine Units N. Association of the Duration of Active Pushing With Obstetric Outcomes. Obstet Gynecol. 2016;127:667–73. [PMC free article] [PubMed] [Google Scholar]

86. Rouse DJ, Weiner SJ, Bloom SL, Varner MW, Spong CY, Ramin SM, Caritis SN, Peaceman AM, Sorokin Y, Sciscione A, Carpenter MW, Mercer BM, Thorp JM, Jr, Malone FD, Harper M, Iams JD, Anderson GD Eunice Kennedy Shriver National Institute of Child H, Human Development Maternal-Fetal Medicine Units N. Second-stage labor duration in nulliparous women: relationship to maternal and perinatal outcomes. Am J Obstet Gynecol. 2009;201:357e1–7. [PMC free article] [PubMed] [Google Scholar]

87. Le Ray C, Audibert F, Goffinet F, Fraser W. When to stop pushing: effects of duration of second-stage expulsion efforts on maternal and neonatal outcomes in nulliparous women with epidural analgesia. Am J Obstet Gynecol. 2009;201:361e1–7. [PubMed] [Google Scholar]

88. American College of O, Gynecologists, Society for Maternal-Fetal M. Obstetric care consensus no. 1: safe prevention of the primary cesarean delivery. Obstet Gynecol. 2014;123:693–711. [PubMed] [Google Scholar]

89. Magro-Malosso ER, Saccone G, Di Tommaso M, Mele M, Berghella V. Neuraxial analgesia to increase the success rate of external cephalic version: a systematic review and meta-analysis of randomized controlled trials. Am J Obstet Gynecol. 2016;215:276–86. [PubMed] [Google Scholar]

90. Hofmeyr GJ. Interventions to help external cephalic version for breech presentation at term. Cochrane Database Syst Rev. 2004:CD000184. [PubMed] [Google Scholar]

91. Cluver C, Hofmeyr GJ, Gyte GM, Sinclair M. Interventions for helping to turn term breech babies to head first presentation when using external cephalic version. Cochrane Database Syst Rev. 2012;1:CD000184. [PMC free article] [PubMed] [Google Scholar]

92. Sultan P, Carvalho B. Neuraxial blockade for external cephalic version: a systematic review. Int J Obstet Anesth. 2011;20:299–306. [PubMed] [Google Scholar]

93. Lavoie A, Guay J. Anesthetic dose neuraxial blockade increases the success rate of external fetal version: a meta-analysis. Can J Anaesth. 2010;57:408–14. [PubMed] [Google Scholar]

94. Chalifoux LA, Bauchat JR, Higgins N, Toledo P, Peralta FM, Farrer J, Gerber SE, McCarthy RJ, Sullivan JT. Effect of Intrathecal Bupivacaine Dose on the Success of External Cephalic Version for Breech Presentation: A Prospective, Randomized, Blinded Clinical Trial. Anesthesiology. 2017;127:625–632. [PubMed] [Google Scholar]

95. Carvalho B, Tan JM, Macario A, El-Sayed YY, Sultan P. Brief report: a cost analysis of neuraxial anesthesia to facilitate external cephalic version for breech fetal presentation. Anesth Analg. 2013;117:155–9. [PubMed] [Google Scholar]

96. Van Thiel DH, Gavaler JS, Stremple J. Lower esophageal sphincter pressure in women using sequential oral contraceptives. Gastroenterology. 1976;71:232–4. [PubMed] [Google Scholar]

97. Fisher RS, Roberts GS, Grabowski CJ, Cohen S. Altered lower esophageal sphincter function during early pregnancy. Gastroenterology. 1978;74:1233–7. [PubMed] [Google Scholar]

98. Chiloiro M, Darconza G, Piccioli E, De Carne M, Clemente C, Riezzo G. Gastric emptying and orocecal transit time in pregnancy. J Gastroenterol. 2001;36:538–43. [PubMed] [Google Scholar]

99. Wong CA, Loffredi M, Ganchiff JN, Zhao J, Wang Z, Avram MJ. Gastric emptying of water in term pregnancy. Anesthesiology. 2002;96:1395–400. [PubMed] [Google Scholar]

100. Porter JS, Bonello E, Reynolds F. The influence of epidural administration of fentanyl infusion on gastric emptying in labour. Anaesthesia. 1997;52:1151–6. [PubMed] [Google Scholar]

101. Lewis G. Saving Mothers’ Lives: the continuing benefits for maternal health from the United Kingdom (UK) Confidential Enquires into Maternal Deaths. Semin Perinatol. 2012;36:19–26. [PubMed] [Google Scholar]

102. Cantwell R, Clutton-Brock T, Cooper G, Dawson A, Drife J, Garrod D, Harper A, Hulbert D, Lucas S, McClure J, Millward-Sadler H, Neilson J, Nelson-Piercy C, Norman J, O’Herlihy C, Oates M, Shakespeare J, de Swiet M, Williamson C, Beale V, Knight M, Lennox C, Miller A, Parmar D, Rogers J, Springett A. Saving Mothers’ Lives: Reviewing maternal deaths to make motherhood safer: 2006–2008. The Eighth Report of the Confidential Enquiries into Maternal Deaths in the United Kingdom. BJOG. 2011;118(Suppl 1):1–203. [PubMed] [Google Scholar]

103. Davies JM, Posner KL, Lee LA, Cheney FW, Domino KB. Liability associated with obstetric anesthesia: a closed claims analysis. Anesthesiology. 2009;110:131–9. [PubMed] [Google Scholar]

104. Sperling JD, Dahlke JD, Sibai BM. Restriction of oral intake during labor: whither are we bound? Am J Obstet Gynecol. 2016;214:592–6. [PubMed] [Google Scholar]

105. Technical Working Group. World Health Organization; Birth: 1997. Care in normal birth: a practical guide; pp. 121–3. [PubMed] [Google Scholar]

106. Metzger BE, Ravnikar V, Vileisis RA, Freinkel N. “Accelerated starvation” and the skipped breakfast in late normal pregnancy. Lancet. 1982;1:588–92. [PubMed] [Google Scholar]

107. Kubli M, Scrutton MJ, Seed PT, O’Sullivan G. An evaluation of isotonic “sport drinks” during labor. Anesth Analg. 2002;94:404–8. table of contents. [PubMed] [Google Scholar]

108. O’Sullivan G, Liu B, Hart D, Seed P, Shennan A. Effect of food intake during labour on obstetric outcome: randomised controlled trial. BMJ. 2009;338:b784. [PMC free article] [PubMed] [Google Scholar]

109. Scrutton MJ, Metcalfe GA, Lowy C, Seed PT, O’Sullivan G. Eating in labour. A randomised controlled trial assessing the risks and benefits. Anaesthesia. 1999;54:329–34. [PubMed] [Google Scholar]

110. Malin GL, Bugg GJ, Thornton J, Taylor MA, Grauwen N, Devlieger R, Kardel KR, Kubli M, Tranmer JE, Jones NW. Does oral carbohydrate supplementation improve labour outcome? A systematic review and individual patient data meta-analysis. BJOG. 2016;123:510–7. [PubMed] [Google Scholar]

111. Singata M, Tranmer J, Gyte GM. Restricting oral fluid and food intake during labour. Cochrane Database Syst Rev. 2013:CD003930. [PMC free article] [PubMed] [Google Scholar]

112. Garry M, Davies S. Failure of regional blockade for caesarean section. Int J Obstet Anesth. 2002;11:9–12. [PubMed] [Google Scholar]

113. Norris MC. Patient variables and the subarachnoid spread of hyperbaric bupivacaine in the term parturient. Anesthesiology. 1990;72:478–82. [PubMed] [Google Scholar]

114. Dahlgren G, Hultstrand C, Jakobsson J, Norman M, Eriksson EW, Martin H. Intrathecal sufentanil, fentanyl, or placebo added to bupivacaine for cesarean section. Anesth Analg. 1997;85:1288–93. [PubMed] [Google Scholar]

115. Palmer CM, Emerson S, Volgoropolous D, Alves D. Dose-response relationship of intrathecal morphine for postcesarean analgesia. Anesthesiology. 1999;90:437–44. [PubMed] [Google Scholar]

116. Abouleish EI. Epinephrine improves the quality of spinal hyperbaric bupivacaine for cesarean section. Anesth Analg. 1987;66:395–400. [PubMed] [Google Scholar]

117. Lavand’homme PM, Roelants F, Waterloos H, Collet V, De Kock MF. An evaluation of the postoperative antihyperalgesic and analgesic effects of intrathecal clonidine administered during elective cesarean delivery. Anesth Analg. 2008;107:948–55. [PubMed] [Google Scholar]

118. Purva M, Russell I, Kinsella M. In: 8.8 Caesarean section anaesthesia: technique and failure rate., Raising the Standard: A Compendium of Audit Recipes for Continuous Quality Improvement in Anaesthesia. 3. Colvin JR, Peden CJ, editors. London, Engalnd: 2012. pp. 220–221. [Google Scholar]

119. Dyer RA, Reed AR, van Dyk D, Arcache MJ, Hodges O, Lombard CJ, Greenwood J, James MF. Hemodynamic effects of ephedrine, phenylephrine, and the coadministration of phenylephrine with oxytocin during spinal anesthesia for elective cesarean delivery. Anesthesiology. 2009;111:753–65. [PubMed] [Google Scholar]

120. Hall PA, Bennett A, Wilkes MP, Lewis M. Spinal anaesthesia for caesarean section: comparison of infusions of phenylephrine and ephedrine. Br J Anaesth. 1994;73:471–4. [PubMed] [Google Scholar]

121. LaPorta RF, Arthur GR, Datta S. Phenylephrine in treating maternal hypotension due to spinal anaesthesia for caesarean delivery: effects on neonatal catecholamine concentrations, acid base status and Apgar scores. Acta Anaesthesiol Scand. 1995;39:901–5. [PubMed] [Google Scholar]

122. Lee A, Ngan Kee WD, Gin T. A quantitative, systematic review of randomized controlled trials of ephedrine versus phenylephrine for the management of hypotension during spinal anesthesia for cesarean delivery. Anesth Analg. 2002;94:920–6. table of contents. [PubMed] [Google Scholar]

123. Ngan Kee WD, Khaw KS, Ng FF. Comparison of phenylephrine infusion regimens for maintaining maternal blood pressure during spinal anaesthesia for Caesarean section. Br J Anaesth. 2004;92:469–74. [PubMed] [Google Scholar]

124. Ngan Kee WD, Khaw KS, Tan PE, Ng FF, Karmakar MK. Placental transfer and fetal metabolic effects of phenylephrine and ephedrine during spinal anesthesia for cesarean delivery. Anesthesiology. 2009;111:506–12. [PubMed] [Google Scholar]

125. Macarthur A, Riley ET. Obstetric anesthesia controversies: vasopressor choice for postspinal hypotension during cesarean delivery. Int Anesthesiol Clin. 2007;45:115–32. [PubMed] [Google Scholar]

126. Habib AS. A review of the impact of phenylephrine administration on maternal hemodynamics and maternal and neonatal outcomes in women undergoing cesarean delivery under spinal anesthesia. Anesth Analg. 2012;114:377–90. [PubMed] [Google Scholar]

127. Ngan Kee WD. The use of vasopressors during spinal anaesthesia for caesarean section. Curr Opin Anaesthesiol. 2017 [PubMed] [Google Scholar]

128. Smiley RM. More perfect? Int J Obstet Anesth. 2017 [PubMed] [Google Scholar]

129. Higgins N, Fitzgerald PC, van Dyk D, Dyer RA, Rodriguez N, McCarthy RJ, Wong CA. The Effect of Prophylactic Phenylephrine and Ephedrine Infusions on Umbilical Artery Blood pH in Women With Preeclampsia Undergoing Cesarean Delivery With Spinal Anesthesia: A Randomized, Double-Blind Trial. Anesth Analg. 2017 [PubMed] [Google Scholar]

130. Dyer RA, Emmanuel A, Adams SC, Lombard CJ, Arcache MJ, Vorster A, Wong CA, Higgins N, Reed AR, James MF, Joolay Y, Schulein S, van Dyk D. A randomised comparison of bolus phenylephrine and ephedrine for the management of spinal hypotension in patients with severe preeclampsia and fetal compromise. Int J Obstet Anesth. 2017 [PubMed] [Google Scholar]

131. Ngan Kee WD, Lee SW, Ng FF, Tan PE, Khaw KS. Randomized double-blinded comparison of norepinephrine and phenylephrine for maintenance of blood pressure during spinal anesthesia for cesarean delivery. Anesthesiology. 2015;122:736–45. [PubMed] [Google Scholar]

132. Ngan Kee WD. A Random-allocation Graded Dose-Response Study of Norepinephrine and Phenylephrine for Treating Hypotension during Spinal Anesthesia for Cesarean Delivery. Anesthesiology. 2017;127:934–941. [PubMed] [Google Scholar]

133. Khaw KS, Wang CC, Ngan Kee WD, Pang CP, Rogers MS. Effects of high inspired oxygen fraction during elective caesarean section under spinal anaesthesia on maternal and fetal oxygenation and lipid peroxidation. Br J Anaesth. 2002;88:18–23. [PubMed] [Google Scholar]

134. Solberg R, Andresen JH, Escrig R, Vento M, Saugstad OD. Resuscitation of hypoxic newborn piglets with oxygen induces a dose-dependent increase in markers of oxidation. Pediatr Res. 2007;62:559–63. [PubMed] [Google Scholar]

135. Duggal N, Poddatoori V, Noroozkhani S, Siddik-Ahmad RI, Caughey AB. Perioperative oxygen supplementation and surgical site infection after cesarean delivery: a randomized trial. Obstet Gynecol. 2013;122:79–84. [PubMed] [Google Scholar]

136. Chatmongkolchart S, Prathep S. Supplemental oxygen for caesarean section during regional anaesthesia. Cochrane Database Syst Rev. 2016;3:CD006161. [PMC free article] [PubMed] [Google Scholar]

137. Carvalho B, Zheng M, Harter S, Sultan P. A Prospective Cohort Study Evaluating the Ability of Anticipated Pain, Perceived Analgesic Needs, and Psychological Traits to Predict Pain and Analgesic Usage following Cesarean Delivery. Anesthesiol Res Pract. 2016;2016:7948412. [PMC free article] [PubMed] [Google Scholar]

138. Pan PH, Tonidandel AM, Aschenbrenner CA, Houle TT, Harris LC, Eisenach JC. Predicting acute pain after cesarean delivery using three simple questions. Anesthesiology. 2013;118:1170–9. [PMC free article] [PubMed] [Google Scholar]

139. Booth JL, Harris LC, Eisenach JC, Pan PH. A Randomized Controlled Trial Comparing Two Multimodal Analgesic Techniques in Patients Predicted to Have Severe Pain After Cesarean Delivery. Anesth Analg. 2016;122:1114–9. [PMC free article] [PubMed] [Google Scholar]

140. Sutton CD, Carvalho B. Optimal Pain Management After Cesarean Delivery. Anesthesiol Clin. 2017;35:107–124. [PubMed] [Google Scholar]

141. Cohen SE, Subak LL, Brose WG, Halpern J. Analgesia after cesarean delivery: patient evaluations and costs of five opioid techniques. Reg Anesth. 1991;16:141–9. [PubMed] [Google Scholar]

142. Lim Y, Jha S, Sia AT, Rawal N. Morphine for post-caesarean section analgesia: intrathecal, epidural or intravenous? Singapore Med J. 2005;46:392–6. [PubMed] [Google Scholar]

143. Carvalho B. Respiratory depression after neuraxial opioids in the obstetric setting. Anesth Analg. 2008;107:956–61. [PubMed] [Google Scholar]

144. Popping DM, Elia N, Marret E, Wenk M, Tramer MR. Opioids added to local anesthetics for single-shot intrathecal anesthesia in patients undergoing minor surgery: a meta-analysis of randomized trials. Pain. 2012;153:784–93. [PubMed] [Google Scholar]

145. Sultan P, Halpern SH, Pushpanathan E, Patel S, Carvalho B. The Effect of Intrathecal Morphine Dose on Outcomes After Elective Cesarean Delivery: A Meta-Analysis. Anesth Analg. 2016;123:154–64. [PubMed] [Google Scholar]

146. Marret E, Kurdi O, Zufferey P, Bonnet F. Effects of nonsteroidal antiinflammatory drugs on patient-controlled analgesia morphine side effects: meta-analysis of randomized controlled trials. Anesthesiology. 2005;102:1249–60. [PubMed] [Google Scholar]

147. TORADOL(R), ketorolac tromethamine [package insert] Nutley, New Jersey: Roche Laboratories; 2013. pp. 1–27. Reference ID: 3281582. [Google Scholar]

148. American Academy of Pediatrics Committee on D. Transfer of drugs and other chemicals into human milk. Pediatrics. 2001;108:776–89. [PubMed] [Google Scholar]

149. Ong CK, Seymour RA, Lirk P, Merry AF. Combining paracetamol (acetaminophen) with nonsteroidal antiinflammatory drugs: a qualitative systematic review of analgesic efficacy for acute postoperative pain. Anesth Analg. 2010;110:1170–9. [PubMed] [Google Scholar]

150. Valentine AR, Carvalho B, Lazo TA, Riley ET. Scheduled acetaminophen with as-needed opioids compared to as-needed acetaminophen plus opioids for post-cesarean pain management. Int J Obstet Anesth. 2015;24:210–6. [PubMed] [Google Scholar]

151. Costello JF, Moore AR, Wieczorek PM, Macarthur AJ, Balki M, Carvalho JC. The transversus abdominis plane block, when used as part of a multimodal regimen inclusive of intrathecal morphine, does not improve analgesia after cesarean delivery. Reg Anesth Pain Med. 2009;34:586–9. [PubMed] [Google Scholar]

152. Abdallah FW, Halpern SH, Margarido CB. Transversus abdominis plane block for postoperative analgesia after Caesarean delivery performed under spinal anaesthesia? A systematic review and meta-analysis. Br J Anaesth. 2012;109:679–87. [PubMed] [Google Scholar]

153. Mishriky BM, George RB, Habib AS. Transversus abdominis plane block for analgesia after Cesarean delivery: a systematic review and meta-analysis. Can J Anaesth. 2012;59:766–78. [PubMed] [Google Scholar]

154. Mirza F, Carvalho B. Transversus abdominis plane blocks for rescue analgesia following Cesarean delivery: a case series. Can J Anaesth. 2013;60:299–303. [PubMed] [Google Scholar]

155. Griffiths JD, Le NV, Grant S, Bjorksten A, Hebbard P, Royse C. Symptomatic local anaesthetic toxicity and plasma ropivacaine concentrations after transversus abdominis plane block for Caesarean section. Br J Anaesth. 2013;110:996–1000. [PubMed] [Google Scholar]

156. Blanco R, Ansari T, Girgis E. Quadratus lumborum block for postoperative pain after caesarean section: A randomised controlled trial. Eur J Anaesthesiol. 2015;32:812–8. [PubMed] [Google Scholar]

157. Blanco R, Ansari T, Riad W, Shetty N. Quadratus Lumborum Block Versus Transversus Abdominis Plane Block for Postoperative Pain After Cesarean Delivery: A Randomized Controlled Trial. Reg Anesth Pain Med. 2016;41:757–762. [PubMed] [Google Scholar]

158. Bamigboye AA, Hofmeyr GJ. Local anaesthetic wound infiltration and abdominal nerves block during caesarean section for postoperative pain relief. Cochrane Database Syst Rev. 2009:CD006954. [PubMed] [Google Scholar]

159. Tharwat AA, Yehia AH, Wahba KA, Ali AE. Efficacy and safety of post-cesarean section incisional infiltration with lidocaine and epinephrine versus lidocaine alone in reducing postoperative pain: A randomized controlled double-blinded clinical trial. J Turk Ger Gynecol Assoc. 2016;17:1–5. [PMC free article] [PubMed] [Google Scholar]

160. Vallejo MC, Steen TL, Cobb BT, Phelps AL, Pomerantz JM, Orebaugh SL, Chelly JE. Efficacy of the bilateral ilioinguinal-iliohypogastric block with intrathecal morphine for postoperative cesarean delivery analgesia. ScientificWorldJournal. 2012;2012:107316. [PMC free article] [PubMed] [Google Scholar]

161. Coffman JC, Fiorini K, Small RH. Ilioinguinal-iliohypogastric block used to rescue ineffective transversus abdominis plane block after cesarean delivery. Int J Obstet Anesth. 2015;24:394–5. [PubMed] [Google Scholar]

162. Kim ES, Kim HK, Baik JS, Ji YT. Continuous Ilioinguinal-iliohypogastric Nerve Block for Groin Pain in a Breast-feeding Patient after Cesarean Delivery. Korean J Pain. 2016;29:193–6. [PMC free article] [PubMed] [Google Scholar]

163. Naghshineh E, Shiari S, Jabalameli M. Preventive effect of ilioinguinal nerve block on postoperative pain after cesarean section. Adv Biomed Res. 2015;4:229. [PMC free article] [PubMed] [Google Scholar]

164. Hattler J, Klimek M, Rossaint R, Heesen M. The Effect of Combined Spinal-Epidural Versus Epidural Analgesia in Laboring Women on Nonreassuring Fetal Heart Rate Tracings: Systematic Review and Meta-analysis. Anesth Analg. 2016;123:955–64. [PubMed] [Google Scholar]

165. Mardirosoff C, Dumont L, Boulvain M, Tramer MR. Fetal bradycardia due to intrathecal opioids for labour analgesia: a systematic review. BJOG. 2002;109:274–81. [PubMed] [Google Scholar]

166. French CA, Cong X, Chung KS. Labor Epidural Analgesia and Breastfeeding: A Systematic Review. J Hum Lact. 2016;32:507–20. [PubMed] [Google Scholar]

167. Chang ZM, Heaman MI. Epidural analgesia during labor and delivery: effects on the initiation and continuation of effective breastfeeding. J Hum Lact. 2005;21:305–14. quiz 315–9, 326. [PubMed] [Google Scholar]

168. Lee AI, McCarthy RJ, Toledo P, Jones MJ, White N, Wong CA. Epidural Labor Analgesia-Fentanyl Dose and Breastfeeding Success: A Randomized Clinical Trial. Anesthesiology. 2017;127:614–624. [PubMed] [Google Scholar]

169. Lie B, Juul J. Effect of epidural vs. general anesthesia on breastfeeding. Acta Obstet Gynecol Scand. 1988;67:207–9. [PubMed] [Google Scholar]

170. Kutlucan L, Seker IS, Demiraran Y, Ersoy O, Karagoz I, Sezen G, Kose SA. Effects of different anesthesia protocols on lactation in the postpartum period. J Turk Ger Gynecol Assoc. 2014;15:233–8. [PMC free article] [PubMed] [Google Scholar]

171. Hirose M, Hara Y, Hosokawa T, Tanaka Y. The effect of postoperative analgesia with continuous epidural bupivacaine after cesarean section on the amount of breast feeding and infant weight gain. Anesth Analg. 1996;82:1166–9. [PubMed] [Google Scholar]

172. Arendt KW, Segal BS. The association between epidural labor analgesia and maternal fever. Clin Perinatol. 2013;40:385–98. [PubMed] [Google Scholar]

173. Petrova A, Demissie K, Rhoads GG, Smulian JC, Marcella S, Ananth CV. Association of maternal fever during labor with neonatal and infant morbidity and mortality. Obstet Gynecol. 2001;98:20–7. [PubMed] [Google Scholar]

174. Kaul B, Vallejo M, Ramanathan S, Mandell G. Epidural labor analgesia and neonatal sepsis evaluation rate: a quality improvement study. Anesth Analg. 2001;93:986–90. [PubMed] [Google Scholar]

175. Lieberman E, Lang JM, Frigoletto F, Jr, Richardson DK, Ringer SA, Cohen A. Epidural analgesia, intrapartum fever, and neonatal sepsis evaluation. Pediatrics. 1997;99:415–9. [PubMed] [Google Scholar]

176. Mayer DC, Chescheir NC, Spielman FJ. Increased intrapartum antibiotic administration associated with epidural analgesia in labor. Am J Perinatol. 1997;14:83–6. [PubMed] [Google Scholar]

177. Bilder D, Pinborough-Zimmerman J, Miller J, McMahon W. Prenatal, perinatal, and neonatal factors associated with autism spectrum disorders. Pediatrics. 2009;123:1293–300. [PubMed] [Google Scholar]

178. Flick RP, Lee K, Hofer RE, Beinborn CW, Hambel EM, Klein MK, Gunn PW, Wilder RT, Katusic SK, Schroeder DR, Warner DO, Sprung J. Neuraxial labor analgesia for vaginal delivery and its effects on childhood learning disabilities. Anesth Analg. 2011;112:1424–31. [PMC free article] [PubMed] [Google Scholar]

179. Hattori R, Desimaru M, Nagayama I, Inoue K. Autistic and developmental disorders after general anaesthetic delivery. Lancet. 1991;337:1357–8. [PubMed] [Google Scholar]

180. American Society of Anesthesiologists. ASA Response to the FDA Med Watch Warning. 2016 https://www.asahq.org/advocacy/fda-and-washington-alerts/washington-alerts/2016/12/asa-response-to-the-fda-med-watch.

181. Ding T, Wang DX, Qu Y, Chen Q, Zhu SN. Epidural labor analgesia is associated with a decreased risk of postpartum depression: a prospective cohort study. Anesth Analg. 2014;119:383–92. [PubMed] [Google Scholar]

182. Wisner KL, Stika CS, Clark CT. Double duty: does epidural labor analgesia reduce both pain and postpartum depression? Anesth Analg. 2014;119:219–21. [PMC free article] [PubMed] [Google Scholar]

183. Lim G, Facco F, Farrell L, Gold M, Wasan A. Intrapartum Pain Improvement as a Predictor for Postpartum Depression. Pittsburgh Journal of Anesthesiology. 2017:182. [Google Scholar]

184. Orbach-Zinger S, Landau R, Harousch AB, Ovad O, Caspi L, Kornilov E, Ioscovich A, Bracco D, Davis A, Fireman S, Hoshen M, Eidelman LA. The Relationship Between Women’s Intention to Request a Labor Epidural Analgesia, Actually Delivering With Labor Epidural Analgesia, and Postpartum Depression at 6 Weeks: A Prospective Observational Study. Anesth Analg. 2017 [PubMed] [Google Scholar]

185. D’Angelo R, Smiley RM, Riley ET, Segal S. Serious complications related to obstetric anesthesia: the serious complication repository project of the Society for Obstetric Anesthesia and Perinatology. Anesthesiology. 2014;120:1505–12. [PubMed] [Google Scholar]

186. De La Rosa K, Mhyre J, Anderson FW. Maternal Mortality From Hemorrhage in Michigan 1998–2011 [8] Obstet Gynecol. 2016;127(Suppl 1):3S. [Google Scholar]

187. Main EK, Cape V, Abreo A, Vasher J, Woods A, Carpenter A, Gould JB. Reduction of Severe Maternal Morbidity from Hemorrhage Using A State Perinatal Quality Collaborative. Am J Obstet Gynecol. 2017 [PubMed] [Google Scholar]

188. Main EK, Goffman D, Scavone BM, Low LK, Bingham D, Fontaine PL, Gorlin JB, Lagrew DC, Levy BS National Parternship for Maternal S, Council for Patient Safety in Women’s Health C. National Partnership for Maternal Safety: consensus bundle on obstetric hemorrhage. Anesth Analg. 2015;121:142–8. [PubMed] [Google Scholar]

189. Kacmar RM, Mhyre JM, Scavone BM, Fuller AJ, Toledo P. The use of postpartum hemorrhage protocols in United States academic obstetric anesthesia units. Anesth Analg. 2014;119:906–10. [PubMed] [Google Scholar]

190. Charbit B, Mandelbrot L, Samain E, Baron G, Haddaoui B, Keita H, Sibony O, Mahieu-Caputo D, Hurtaud-Roux MF, Huisse MG, Denninger MH, de Prost D, Group PPHS. The decrease of fibrinogen is an early predictor of the severity of postpartum hemorrhage. J Thromb Haemost. 2007;5:266–73. [PubMed] [Google Scholar]

191. Shaylor R, Weiniger CF, Austin N, Tzabazis A, Shander A, Goodnough LT, Butwick AJ. National and International Guidelines for Patient Blood Management in Obstetrics: A Qualitative Review. Anesth Analg. 2017;124:216–232. [PMC free article] [PubMed] [Google Scholar]

192. American Society of Anesthesiologists Task Force on Perioperative Blood M. Practice guidelines for perioperative blood management: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management*. Anesthesiology. 2015;122:241–75. [PubMed] [Google Scholar]

193. Salpeter SR, Buckley JS, Chatterjee S. Impact of more restrictive blood transfusion strategies on clinical outcomes: a meta-analysis and systematic review. Am J Med. 2014;127:124–131. e3. [PubMed] [Google Scholar]

194. Shaz BH, Hillyer CD, Waters JH. Patient blood management: key for accountable care organizations. JAMA Surg. 2013;148:491–2. [PubMed] [Google Scholar]

195. American College of Obstetricians Gynecologists. ACOG Practice Bulletin: Clinical Management Guidelines for Obstetrician-Gynecologists Number 76, October 2006: postpartum hemorrhage. Obstet Gynecol. 2006;108:1039–47. [PubMed] [Google Scholar]

196. Albright CM, Rouse DJ, Werner EF. Cost savings of red cell salvage during cesarean delivery. Obstet Gynecol. 2014;124:690–6. [PubMed] [Google Scholar]

197. Waters JH, Lee JS, Karafa MT. A mathematical model of cell salvage compared and combined with normovolemic hemodilution. Transfusion. 2004;44:1412–6. [PubMed] [Google Scholar]

198. Butwick A, Ting V, Ralls LA, Harter S, Riley E. The association between thromboelastographic parameters and total estimated blood loss in patients undergoing elective cesarean delivery. Anesth Analg. 2011;112:1041–7. [PubMed] [Google Scholar]

199. Karlsson O, Jeppsson A, Hellgren M. Major obstetric haemorrhage: monitoring with thromboelastography, laboratory analyses or both? Int J Obstet Anesth. 2014;23:10–7. [PubMed] [Google Scholar]

200. Novikova N, Hofmeyr GJ, Cluver C. Tranexamic acid for preventing postpartum haemorrhage. Cochrane Database Syst Rev. 2015:CD007872. [PubMed] [Google Scholar]

201. Collaborators TWT. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, nrandomised, double-blind, placebo-controlled trial. Lancet. 2017 E-pub ahead of print.: 1–12. [PMC free article] [PubMed] [Google Scholar]

202. Singh S, McGlennan A, England A, Simons R. A validation study of the CEMACH recommended modified early obstetric warning system (MEOWS) Anaesthesia. 2012;67:12–8. [PubMed] [Google Scholar]

203. Maternal Early Warning Criteria. National Partnership for Maternal Safety; 2017. [Google Scholar]

204. Mhyre JM, D’Oria R, Hameed AB, Lappen JR, Holley SL, Hunter SK, Jones RL, King JC, D’Alton ME. The maternal early warning criteria: a proposal from the national partnership for maternal safety. Obstet Gynecol. 2014;124:782–6. [PubMed] [Google Scholar]

205. Jonsson M, Hanson U, Lidell C, Norden-Lindeberg S. ST depression at caesarean section and the relation to oxytocin dose. A randomised controlled trial. BJOG. 2010;117:76–83. [PubMed] [Google Scholar]

206. Kovacheva VP, Soens MA, Tsen LC. A Randomized, Double-blinded Trial of a “Rule of Threes” Algorithm versus Continuous Infusion of Oxytocin during Elective Cesarean Delivery. Anesthesiology. 2015;123:92–100. [PubMed] [Google Scholar]

207. George RB, McKeen D, Chaplin AC, McLeod L. Up-down determination of the ED(90) of oxytocin infusions for the prevention of postpartum uterine atony in parturients undergoing Cesarean delivery. Can J Anaesth. 2010;57:578–82. [PubMed] [Google Scholar]

208. Dagraca J, Malladi V, Nunes K, Scavone B. Outcomes after institution of a new oxytocin infusion protocol during the third stage of labor and immediate postpartum period. Int J Obstet Anesth. 2013;22:194–9. [PubMed] [Google Scholar]

209. Lee AI, Wong CA, Healy L, Toledo P. Impact of a third stage of labor oxytocin protocol on cesarean delivery outcomes. Int J Obstet Anesth. 2014;23:18–22. [PubMed] [Google Scholar]

210. Grotegut CA, Paglia MJ, Johnson LN, Thames B, James AH. Oxytocin exposure during labor among women with postpartum hemorrhage secondary to uterine atony. Am J Obstet Gynecol. 2011;204:56e1–6. [PMC free article] [PubMed] [Google Scholar]

211. Phaneuf S, Rodriguez Linares B, TambyRaja RL, MacKenzie IZ, Lopez Bernal A. Loss of myometrial oxytocin receptors during oxytocin-induced and oxytocin-augmented labour. J Reprod Fertil. 2000;120:91–7. [PubMed] [Google Scholar]

212. Balki M, Ramachandran N, Lee S, Talati C. The Recovery Time of Myometrial Responsiveness After Oxytocin-Induced Desensitization in Human Myometrium In Vitro. Anesth Analg. 2016;122:1508–15. [PubMed] [Google Scholar]

213. Balki M, Erik-Soussi M, Kingdom J, Carvalho JC. Oxytocin pretreatment attenuates oxytocin-induced contractions in human myometrium in vitro. Anesthesiology. 2013;119:552–61. [PubMed] [Google Scholar]

214. Lavoie A, McCarthy RJ, Wong CA. The ED90 of prophylactic oxytocin infusion after delivery of the placenta during cesarean delivery in laboring compared with nonlaboring women: an up-down sequential allocation dose-response study. Anesth Analg. 2015;121:159–64. [PubMed] [Google Scholar]

215. Kassebaum NJ, Bertozzi-Villa A, Coggeshall MS, Shackelford KA, Steiner C, Heuton KR, Gonzalez-Medina D, Barber R, Huynh C, Dicker D, Templin T, Wolock TM, Ozgoren AA, Abd-Allah F, Abera SF, Abubakar I, Achoki T, Adelekan A, Ademi Z, Adou AK, Adsuar JC, Agardh EE, Akena D, Alasfoor D, Alemu ZA, Alfonso-Cristancho R, Alhabib S, Ali R, Al Kahbouri MJ, Alla F, Allen PJ, AlMazroa MA, Alsharif U, Alvarez E, Alvis-Guzman N, Amankwaa AA, Amare AT, Amini H, Ammar W, Antonio CA, Anwari P, Arnlov J, Arsenijevic VS, Artaman A, Asad MM, Asghar RJ, Assadi R, Atkins LS, Badawi A, Balakrishnan K, Basu A, Basu S, Beardsley J, Bedi N, Bekele T, Bell ML, Bernabe E, Beyene TJ, Bhutta Z, Bin Abdulhak A, Blore JD, Basara BB, Bose D, Breitborde N, Cardenas R, Castaneda-Orjuela CA, Castro RE, Catala-Lopez F, Cavlin A, Chang JC, Che X, Christophi CA, Chugh SS, Cirillo M, Colquhoun SM, Cooper LT, Cooper C, da Costa Leite I, Dandona L, Dandona R, Davis A, Dayama A, Degenhardt L, De Leo D, del Pozo-Cruz B, Deribe K, Dessalegn M, deVeber GA, Dharmaratne SD, Dilmen U, Ding EL, Dorrington RE, Driscoll TR, Ermakov SP, Esteghamati A, Faraon EJ, Farzadfar F, Felicio MM, Fereshtehnejad SM, de Lima GM, Forouzanfar MH, Franca EB, Gaffikin L, Gambashidze K, Gankpe FG, Garcia AC, Geleijnse JM, Gibney KB, Giroud M, Glaser EL, Goginashvili K, Gona P, Gonzalez-Castell D, Goto A, Gouda HN, Gugnani HC, Gupta R, Gupta R, Hafezi-Nejad N, Hamadeh RR, Hammami M, Hankey GJ, Harb HL, Havmoeller R, Hay SI, Pi IB, Hoek HW, Hosgood HD, Hoy DG, Husseini A, Idrisov BT, Innos K, Inoue M, Jacobsen KH, Jahangir E, Jee SH, Jensen PN, Jha V, Jiang G, Jonas JB, Juel K, Kabagambe EK, Kan H, Karam NE, Karch A, Karema CK, Kaul A, Kawakami N, Kazanjan K, Kazi DS, Kemp AH, Kengne AP, Kereselidze M, Khader YS, Khalifa SE, Khan EA, Khang YH, Knibbs L, Kokubo Y, Kosen S, Defo BK, Kulkarni C, Kulkarni VS, Kumar GA, Kumar K, Kumar RB, Kwan G, Lai T, Lalloo R, Lam H, Lansingh VC, Larsson A, Lee JT, Leigh J, Leinsalu M, Leung R, Li X, Li Y, Li Y, Liang J, Liang X, Lim SS, Lin HH, Lipshultz SE, Liu S, Liu Y, Lloyd BK, London SJ, Lotufo PA, Ma J, Ma S, Machado VM, Mainoo NK, Majdan M, Mapoma CC, Marcenes W, Marzan MB, Mason-Jones AJ, Mehndiratta MM, Mejia-Rodriguez F, Memish ZA, Mendoza W, Miller TR, Mills EJ, Mokdad AH, Mola GL, Monasta L, de la Cruz Monis J, Hernandez JC, Moore AR, Moradi-Lakeh M, Mori R, Mueller UO, Mukaigawara M, Naheed A, Naidoo KS, Nand D, Nangia V, Nash D, Nejjari C, Nelson RG, Neupane SP, Newton CR, Ng M, Nieuwenhuijsen MJ, Nisar MI, Nolte S, Norheim OF, Nyakarahuka L, Oh IH, Ohkubo T, Olusanya BO, Omer SB, Opio JN, Orisakwe OE, Pandian JD, Papachristou C, Park JH, Caicedo AJ, Patten SB, Paul VK, Pavlin BI, Pearce N, Pereira DM, Pesudovs K, Petzold M, Poenaru D, Polanczyk GV, Polinder S, Pope D, Pourmalek F, Qato D, Quistberg DA, Rafay A, Rahimi K, Rahimi-Movaghar V, ur Rahman S, Raju M, Rana SM, Refaat A, Ronfani L, Roy N, Pimienta TG, Sahraian MA, Salomon JA, Sampson U, Santos IS, Sawhney M, Sayinzoga F, Schneider IJ, Schumacher A, Schwebel DC, Seedat S, Sepanlou SG, Servan-Mori EE, Shakh-Nazarova M, Sheikhbahaei S, Shibuya K, Shin HH, Shiue I, Sigfusdottir ID, Silberberg DH, Silva AP, Singh JA, Skirbekk V, Sliwa K, Soshnikov SS, Sposato LA, Sreeramareddy CT, Stroumpoulis K, Sturua L, Sykes BL, Tabb KM, Talongwa RT, Tan F, Teixeira CM, Tenkorang EY, Terkawi AS, Thorne-Lyman AL, Tirschwell DL, Towbin JA, Tran BX, Tsilimbaris M, Uchendu US, Ukwaja KN, Undurraga EA, Uzun SB, Vallely AJ, van Gool CH, Vasankari TJ, Vavilala MS, Venketasubramanian N, Villalpando S, Violante FS, Vlassov VV, Vos T, Waller S, Wang H, Wang L, Wang X, Wang Y, Weichenthal S, Weiderpass E, Weintraub RG, Westerman R, Wilkinson JD, Woldeyohannes SM, Wong JQ, Wordofa MA, Xu G, Yang YC, Yano Y, Yentur GK, Yip P, Yonemoto N, Yoon SJ, Younis MZ, Yu C, Jin KY, El Sayed Zaki M, Zhao Y, Zheng Y, Zhou M, Zhu J, Zou XN, Lopez AD, Naghavi M, Murray CJ, Lozano R. Global, regional, and national levels and causes of maternal mortality during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:980–1004. [PMC free article] [PubMed] [Google Scholar]

216. D’Alton ME, Friedman AM, Smiley RM, Montgomery DM, Paidas MJ, D’Oria R, Frost JL, Hameed AB, Karsnitz D, Levy BS, Clark SL. National Partnership for Maternal Safety: Consensus Bundle on Venous Thromboembolism. Obstet Gynecol. 2016;128:688–98. [PubMed] [Google Scholar]

217. Kendig S, Keats JP, Hoffman MC, Kay LB, Miller ES, Moore Simas TA, Frieder A, Hackley B, Indman P, Raines C, Semenuk K, Wisner KL, Lemieux LA. Consensus Bundle on Maternal Mental Health: Perinatal Depression and Anxiety. Obstet Gynecol. 2017;129:422–430. [PMC free article] [PubMed] [Google Scholar]

218. Rosenbaum T, Mhyre JM. The Anesthesiologist’s Role in the National Partnership for Maternal Safety’s Hemorrhage Bundle: A Review Article. Clin Obstet Gynecol. 2017 [PubMed] [Google Scholar]


Page 2

Challenges to definitive investigations on labor neuraxial analgesia’s effect on risk for instrumental delivery.

Factor/ConfounderComment
Density of neuraxial block at second stage of laborDense analgesia may: (1) impair maternal expulsive efforts (motor block); (2) impede maternal coordination of expulsive effort with uterine contraction (dense sensory block); (3) excessively relax pelvic floor muscle tone and impair fetal head rotation
Obstetrician PracticeNone of the trials are blinded, therefore, obstetricians who make the decision to perform an instrumental vaginal delivery are not blinded to group allocation.Obstetricians may be more likely to perform instrumented delivery in a woman with effective second stage analgesia

Randomized control trials on this topic have been performed in academic centers, where an obligation to teach instrumental delivery exists

Practice TypeRandomized control trials from academic centers have shown an association between neuraxial analgesia and instrumental delivery
Impact studies (pre-post studies carried out primarily at military medical centers or other non-training institutions) have failed to find an association between neuraxial analgesia and instrumental delivery
Factors influencing degree of neuraxial blockHigher local anesthetic concentrations and higher higher total doses are linked to higher risk for instrumental delivery; method of neuraxial analgesia maintenance (i.e. continuous infusion, programmed intermittent bolus) show variable results for rates of instrumental vaginal delivery, primarily driven by differences in concentration and motor block
Method of neuraxial labor analgesia initiationComparisons of combined spinal-epidural and epidural techniques for outcome of instrumental delivery have had conflicting results