When the two lens of focal length f1 and f2 are kept in contact then focal length of the combination is?

Option 3 : \(\dfrac{f_1 f_2}{f_1 + f_2}\)

When the two lens of focal length f1 and f2 are kept in contact then focal length of the combination is?

India's Super Teachers for all govt. exams Under One Roof

Enroll For Free Now

When the two lens of focal length f1 and f2 are kept in contact then focal length of the combination is?

CONCEPT:

  • The focal length of the combination: When two lenses of focal length f1 and f2 are placed in contact, the effective focal length f of the combination is given by:

\( {1 \over f}= {1 \over f_1} +{1 \over f_2}\)

CALCULATION:

Given that Two thin lenses are of focal lengths f1 and f2 

The focal length of the combination \( {1 \over f}= {1 \over f_1} +{1 \over f_2}\)

\(f=\dfrac{f_1 f_2}{f_1 + f_2}\)

So the correct answer is option 3.

When the two lens of focal length f1 and f2 are kept in contact then focal length of the combination is?
Important Points

  • The focal length of the convex lens is positive and that of the concave lens is negative. 

India’s #1 Learning Platform

Start Complete Exam Preparation

When the two lens of focal length f1 and f2 are kept in contact then focal length of the combination is?

Daily Live MasterClasses

When the two lens of focal length f1 and f2 are kept in contact then focal length of the combination is?

Practice Question Bank

When the two lens of focal length f1 and f2 are kept in contact then focal length of the combination is?

Mock Tests & Quizzes

Get Started for Free Download App

Trusted by 3.3 Crore+ Students

Uh-Oh! That’s all you get for now.

We would love to personalise your learning journey. Sign Up to explore more.

Sign Up or Login

Skip for now

Uh-Oh! That’s all you get for now.

We would love to personalise your learning journey. Sign Up to explore more.

Sign Up or Login

Skip for now

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

When the two lens of focal length f1 and f2 are kept in contact then focal length of the combination is?

Text Solution

Solution : If two lenses of focal lengths, `F_(1)` and `f_(2)` are kept in contact with each other , the focal length (f) of the combination is given by `1/f =(1)/(f_(2)) +(1)/(f_(2))`/ <br> <img src="https://d10lpgp6xz60nq.cloudfront.net/physics_images/NVT_SCI_TECH_DIG_X_P1_C07_E10_045_S01.png" width="80%"> <br> If `P_(1) and P_(2)` are the powers of these lenses, the power (P) of the combination is given by `P=P_(1)+P_(2)`

Let two thin lenses L1 and L2 of focal lengths f1 and f2 be put in contact. O is a point object at a distance u from the lens L1 Its image is formed at I after refraction through the two lenses at a distance v from the combination. The lens L1 forms the image of O at I’. I’, then serves as a virtual object for the lens L2 which forms a real image at I.

When the two lens of focal length f1 and f2 are kept in contact then focal length of the combination is?

Now, we know that by lens formula
`1/v - 1/u = 1/f`

Applying this relation for refraction at the lens
L1 of focal length f1 can be written as

`1/v' - 1/u = 1/f_1`    ...(i)

For refraction at the lens L2
u = v', v = v

∴ For this lens `1/v - 1/v' = 1/f_2`    ...(ii)

And if F is the focal length of the combination, then

`1/v - 1/u = 1/F`

Adding (i) and (ii), we get

`1/v' - 1/u + 1/v - 1/v' = 1/f_1  + 1/f_2`

or `1/v -1/u = 1/f_1  + 1/f_2`

or `1/"F" = 1/f_1  + 1/f_2 `