What do scientists call the independent microorganisms in the human body

  1. Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    CAS  PubMed  Google Scholar 

  2. Crist, E., Mora, C. & Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 356, 260–264 (2017).

    CAS  PubMed  Google Scholar 

  3. Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).

    CAS  PubMed  Google Scholar 

  4. Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    PubMed  Google Scholar 

  5. Ripple, W. J. et al. World scientists’ warning to humanity: a second notice. BioScience 67, 1026–1028 (2017).

    Google Scholar 

  6. United Nations Department of Economic and Social Affairs. The Sustainable Development Goals Report 2018 (United Nations, 2018).

  7. Timmis, K. et al. The urgent need for microbiology literacy in society. Environ. Microbiol. 21, 1513–1528 (2019).

    PubMed  Google Scholar 

  8. Flemming, H. C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).

    CAS  PubMed  Google Scholar 

  9. Maloy, S., Moran, M. A., Mulholland, M. R., Sosik, H. M. & Spear, J. R. Microbes and Climate Change: Report on an American Academy of Microbiology and American Geophysical Union Colloquium held in Washington, DC, in March 2016 (American Society for Microbiology, 2017).

  10. Jørgensen, B. B. & Boetius, A. Feast and famine — microbial life in the deep-sea bed. Nat. Microbiol. Rev. 5, 770–781 (2007).

    Google Scholar 

  11. Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    PubMed  Google Scholar 

  12. Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507–510 (2001).

    CAS  PubMed  Google Scholar 

  13. Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).

    CAS  PubMed  Google Scholar 

  14. Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D’Hondt, S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Natl Acad. Sci. USA 109, 16213–16216 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Danovaro, R., Corinaldesi, C., Rastelli, E. & Dell’Anno, A. Towards a better quantitative assessment of the relevance of deep-sea viruses, Bacteria and Archaea in the functioning of the ocean seafloor. Aquat. Microb. Ecol. 75, 81–90 (2015).

    Google Scholar 

  17. Caldeira, K. & Wickett, M. E. Oceanography: anthropogenic carbon and ocean pH. Nature 425, 365 (2003).

    CAS  PubMed  Google Scholar 

  18. Bunse, C. et al. Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2. Nat. Clim. Change 5, 483–491 (2016).

    Google Scholar 

  19. Hurd, C. L., Lenton, A., Tilbrook, B. & Boyd, P. W. Current understanding and challenges for oceans in a higher-CO2 world. Nat. Clim. Change 8, 686–694 (2018).

    CAS  Google Scholar 

  20. Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).

    PubMed  Google Scholar 

  21. Sosdian, S. M. et al. Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy. Earth Planet. Sci. Lett. 248, 362–376 (2018).

    Google Scholar 

  22. Riebesell, U. & Gattuso, J.-P. Lessons learned from ocean acidification research. Nat. Clim. Change 5, 12–14 (2015).

    CAS  Google Scholar 

  23. Gao, K. et al. Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nat. Clim. Change 2, 519–523 (2012).

    CAS  Google Scholar 

  24. Boyd, P. W. Framing biological responses to a changing ocean. Nat. Clim. Change 3, 530–533 (2013).

    Google Scholar 

  25. Pörtner, H.-O. et al. in Climate Change 2014 — Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report (eds Field, C. B. et al.) 411–484 (Cambridge University Press, 2014).

  26. Brennan, G. & Collins, S. Growth responses of a green alga to multiple environmental drivers. Nat. Clim. Change 5, 892–897 (2015).

    Google Scholar 

  27. Hutchins, D. A. & Boyd, P. W. Marine phytoplankton and the changing ocean iron cycle. Nat. Clim. Change 6, 1072–1079 (2016).

    CAS  Google Scholar 

  28. Hutchins, D. A. & Fu, F. X. Microorganisms and ocean global change. Nat. Microbiol. 2, 17508 (2017).

    Google Scholar 

  29. Rintoul, S. R. et al. Choosing the future of Antarctica. Nature 558, 233–241 (2018).

    CAS  PubMed  Google Scholar 

  30. Behrenfeld, M. J. Climate-mediated dance of the plankton. Nat. Clim. Change 4, 880–887 (2014).

    Google Scholar 

  31. De Baar, H. J. W. et al. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373, 412–415 (1995).

    Google Scholar 

  32. Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions. Science 315, 612–617 (2007).

    CAS  PubMed  Google Scholar 

  33. Behrenfeld, M. J. et al. Revaluating ocean warming impacts on global phytoplankton. Nat. Clim. Change 6, 323–330 (2016).

    Google Scholar 

  34. Behrenfeld, M. J. et al. Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nat. Geosci. 10, 118–122 (2017).

    CAS  Google Scholar 

  35. Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    CAS  PubMed  Google Scholar 

  36. Levitan, O. et al. Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. Glob. Change Biol. 13, 531–538 (2007).

    Google Scholar 

  37. Verspagen, J. M., Van de Waal, D. B., Finke, J. F., Visser, P. M. & Huisman, J. Contrasting effects of rising CO2 on primary production and ecological stoichiometry at different nutrient levels. Ecol. Lett. 17, 951–960 (2014).

    PubMed  Google Scholar 

  38. Holding, J. M. et al. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean. Nat. Clim. Change 5, 1079–1082 (2015).

    CAS  Google Scholar 

  39. Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    CAS  PubMed  Google Scholar 

  40. Mackas, D. L. Does blending of chlorophyll data bias temporal trend? Nature 472, E4–E5 (2011).

    CAS  PubMed  Google Scholar 

  41. Rykaczewski, R. R. & Dunne, J. P. A measured look at ocean chlorophyll trends. Nature 472, E5–E6 (2011).

    CAS  PubMed  Google Scholar 

  42. McQuatters-Gollop, A. et al. Is there a decline in marine phytoplankton? Nature 472, E6–E7 (2011).

    CAS  PubMed  Google Scholar 

  43. Boyce, D. G., Lewis, M. R. & Worm, B. Boyce et al. reply. Nature 472, E8–E9 (2011).

    CAS  Google Scholar 

  44. Antoine, D., Morel, A., Gordon, H. R., Banzon, V. F. & Evans, R. H. Bridging ocean color observations of the 1980s and 2000s in search of long-term trends. J. Geophys. Res. Oceans 110, C06009 (2005).

    Google Scholar 

  45. Wernand, M. R., van der Woerd, H. J. & Gieskes, W. W. Trends in ocean colour and chlorophyll concentration from 1889 to 2000, worldwide. PLOS ONE 8, e63766 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rousseaux, C. S. & Gregg, W. W. Recent decadal trends in global phytoplankton composition. Global Biogeochem. Cycles 29, 1674–1688 (2015).

    CAS  Google Scholar 

  47. Kirchman, D. L., Morán, X. A. & Ducklow, H. Microbial growth in the polar oceans — role of temperature and potential impact of climate change. Nat. Rev. Microbiol. 7, 451–459 (2009).

    CAS  PubMed  Google Scholar 

  48. Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J. & Karl, D. M. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc. Natl Acad. Sci. USA 106, 12235–12240 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Saba, V. S. et al. Challenges of modeling depth-integrated marine primary productivity over multiple decades: a case study at BATS and HOT. Global Biogeochem. Cycles 24, GB3020 (2010).

    Google Scholar 

  50. Buttigieg, P. L., Fadeev, E., Bienhold, C., Hehemann, L., Offre, P. & Boetius, A. Marine microbes in 4D—using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr. Opin. Microbiol. 43, 169–185 (2018).

    PubMed  Google Scholar 

  51. Rusch, D. B. et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLOS Biol. 5, e77 (2007).

    PubMed  PubMed Central  Google Scholar 

  52. Brown, M. V. et al. Global biogeography of SAR11 marine bacteria. Mol. Syst. Biol. 8, 595 (2012).

    PubMed  PubMed Central  Google Scholar 

  53. Wilkins, D. et al. Biogeographic partitioning of Southern Ocean microorganisms revealed by metagenomics. Environ. Microbiol. 15, 1318–1333 (2013).

    CAS  PubMed  Google Scholar 

  54. Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).

    PubMed  Google Scholar 

  55. de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

    PubMed  Google Scholar 

  56. Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).

    PubMed  Google Scholar 

  57. Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).

    CAS  PubMed  Google Scholar 

  59. Gregory, A. et al. Marine DNA viral macro- and micro-diversity from pole to pole. Cell 177, 1109–1123.e14 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A. & Quéguiner, B. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycle 9, 359–372 (1995).

    CAS  Google Scholar 

  61. Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl Acad. Sci. USA 113, E1516–E1525 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–37 (2018).

    Google Scholar 

  63. Mahadevan, A., D’Asaro, E., Lee, C. & Perry, M. J. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science 337, 54–58 (2012).

    CAS  PubMed  Google Scholar 

  64. Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).

    CAS  PubMed  Google Scholar 

  65. Behrenfeld, M. J., Doney, S. C., Lima, I., Boss, E. S. & Siegel, D. A. Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom. Global Biogeochem. Cycles 27, 526–540 (2013).

    CAS  Google Scholar 

  66. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    CAS  PubMed  Google Scholar 

  67. Behrenfeld, M. J. et al. Biospheric primary production during an ENSO transition. Science 291, 2594–2597 (2001).

    CAS  PubMed  Google Scholar 

  68. Boetius, A. et al. Massive export of algal biomass from the melting Arctic sea ice. Science 339, 1430 (2013).

    CAS  PubMed  Google Scholar 

  69. Pachiadaki, M. G. et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358, 1046–1051 (2017).

    CAS  PubMed  Google Scholar 

  70. Grzymski, J. J. et al. A metagenomic assessment of winter and summer bacterioplankton from Antarctic Peninsula coastal surface waters. ISME J. 6, 1901–1915 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Boetius, A. & Wenzhöfer, F. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat. Geosci. 6, 725–734 (2013).

    CAS  Google Scholar 

  72. Danovaro, R. et al. Marine viruses and global climate change. FEMS Microbiol. Rev. 35, 993–1034 (2011).

    CAS  PubMed  Google Scholar 

  73. Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    CAS  PubMed  Google Scholar 

  74. Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    PubMed  Google Scholar 

  75. Bertagnolli, A. D. & Stewart, F. J. Microbial niches in marine oxygen minimum zones. Nat. Rev. Microbiol. 16, 723–729 (2018).

    CAS  PubMed  Google Scholar 

  76. Danovaro, R., Molari, M., Corinaldesi, C. & Dell’Anno, A. Macroecological drivers of archaea and bacteria in benthic deep-sea ecosystems. Sci. Adv. 2, e1500961 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. Bienhold, C., Zinger, L., Boetius, A. & Ramette, A. Diversity and biogeography of bathyal and abyssal seafloor bacteria. PLOS ONE 11, e0148016 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. Rosenfeld, D. et al. Aerosol-driven droplet concentrations dominate coverage and water of oceanic low-level clouds. Science 363, eaav0566 (2019).

    CAS  PubMed  Google Scholar 

  79. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661 (1987).

    CAS  Google Scholar 

  80. Gantt, B. & Meskhidze, N. The physical and chemical characteristics of marine primary organic aerosol: a review. Atmos. Chem. Phys. 13, 3979–3996 (2013).

    Google Scholar 

  81. Meskhidze, N. & Nenes, A. Phytoplankton and cloudiness in the Southern. Ocean. Science 314, 1419–1423 (2006).

    CAS  PubMed  Google Scholar 

  82. Andreae, M. O. & Rosenfeld, D. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci. Rev. 89, 13–41 (2008).

    Google Scholar 

  83. Moore, R. H. et al. Droplet number uncertainties associated with CCN: an assessment using observations and a global model adjoint. Atmos. Chem. Phys. 13, 4235–4251 (2013).

    CAS  Google Scholar 

  84. Sanchez, K. J. et al. Substantial seasonal contribution of observed biogenic sulfate particles to cloud condensation nuclei. Sci. Rep. 8, 3235 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. Atwood, T. B. et al. Predators help protect carbon stocks in blue carbon ecosystems. Nat. Clim. Change 5, 1038–1045 (2015).

    Google Scholar 

  86. Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).

    CAS  PubMed  Google Scholar 

  87. Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change 3, 961–968 (2013).

    CAS  Google Scholar 

  88. Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    CAS  PubMed  Google Scholar 

  89. Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551 (1994).

    CAS  PubMed  Google Scholar 

  90. Bellwood, D. R., Hoey, A. S., Ackerman, J. L. & Depczynski, M. Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob. Change Biol. 12, 1587–1594 (2006).

    Google Scholar 

  91. Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    CAS  PubMed  Google Scholar 

  92. Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).

    CAS  PubMed  Google Scholar 

  93. Enochs, I. C. et al. Shift from coral to macroalgae dominance on a volcanically acidified reef. Nat. Clim. Change 5, 1083–1088 (2015).

    CAS  Google Scholar 

  94. De Bakker, D. M. et al. 40 years of benthic community change on the Caribbean reefs of Curaçao and Bonaire: the rise of slimy cyanobacterial mats. Coral Reefs 36, 355–367 (2017).

    Google Scholar 

  95. Ford, A. K. et al. Reefs under siege: the rise, putative drivers, and consequences of benthic cyanobacterial mats. Front. Mar. Sci. 5, 18 (2018).

    Google Scholar 

  96. Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Change 7, 627–636 (2017).

    Google Scholar 

  98. Quigley, K. M., Baker, A. C., Coffroth, M. A., Willis, B. L. & van Oppen, M. J. H. in Coral Bleaching: Patterns, Processes, Causes and Consequences Ch. 6 (eds van Oppen, M. J. H. & Lough, J. M.) (Springer, 2018).

  99. Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: Underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).

    CAS  PubMed  Google Scholar 

  100. Webster, N. S. & Reusch, T. B. H. Microbial contributions to the persistence of coral reefs. ISME J. 11, 2167–2174 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. H. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).

    CAS  PubMed  Google Scholar 

  102. Zinger, L., Boetius, A. & Ramette, A. Bacterial taxa-area and distance-decay relationships in marine environments. Mol. Ecol. 23, 954–964 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Archer, S. D. J. et al. Airborne microbial transport limitation to isolated Antarctic soil habitats. Nat. Microbiol. 4, 925–932 (2019).

    CAS  PubMed  Google Scholar 

  104. Wilkins, D., van Sebille, E., Rintoul, S. R., Lauro, F. M. & Cavicchioli, R. Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nat. Commun. 4, 2457 (2013).

    PubMed  Google Scholar 

  105. Cavicchioli, R. Microbial ecology of Antarctic aquatic systems. Nat. Rev. Microbiol. 13, 691–706 (2015).

    CAS  PubMed  Google Scholar 

  106. Riebesell, U. et al. Toxic algal bloom induced by ocean acidification disrupts the pelagic food web. Nat. Clim. Change 8, 1082 (2018).

    CAS  Google Scholar 

  107. Hutchins, D. A. et al. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide. Nat. Commun. 6, 8155 (2015).

    PubMed  Google Scholar 

  108. Schaum, E., Rost, B., Millar, A. J. & Sinéad, C. Variation in plastic responses to ocean acidification in a globally distributed picoplankton species. Nat. Clim. Change 3, 298–302 (2012).

    Google Scholar 

  109. Schlüter, L. et al. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat. Clim. Change 4, 1024–1030 (2014).

    Google Scholar 

  110. Hoppe, C. J. M., Wolf, K., Schuback, N., Tortell, P. D. & Rost, B. Compensation of ocean acidification effects in Arctic phytoplankton assemblages. Nat. Clim. Change 8, 529–533 (2018).

    CAS  Google Scholar 

  111. Highfield, A., Joint, I., Gilbert, J. A., Crawfurd, K. J. & Schroeder, D. C. Change in Emiliania huxleyi virus assemblage diversity but not in host genetic composition during an ocean acidification mesocosm experiment. Viruses 9, E41 (2017).

    PubMed  Google Scholar 

  112. Flynn, K. J. et al. Changes in pH at the exterior surface of plankton with ocean acidification. Nat. Clim. Change 2, 510–513 (2012).

    CAS  Google Scholar 

  113. Traving, S. J., Clokie, M. R. & Middelboe, M. Increased acidification has a profound effect on the interactions between the cyanobacterium Synechococcus sp. WH7803 and its viruses. FEMS Microbiol. Ecol. 87, 133–141 (2014).

    CAS  PubMed  Google Scholar 

  114. Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).

    CAS  PubMed  Google Scholar 

  115. Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J. & Follows, M. J. Patterns of diversity in marine phytoplankton. Science 327, 1509–1511 (2010).

    CAS  PubMed  Google Scholar 

  116. Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A. Global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).

    CAS  PubMed  Google Scholar 

  117. Swan, B. K. et al. Prevalent genome streamlining and latitudinal divergence of surface ocean bacterioplankton. Proc. Natl Acad. Sci. USA 110, 11463–11468 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA 113, 2964–2969 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Cavicchioli, R. On the concept of a psychrophile. ISME J. 10, 793–795 (2016).

    PubMed  Google Scholar 

  120. Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).

    CAS  Google Scholar 

  121. Moran, X. A. G., Lopez-Urrutia, A., Calvo-Diaz, A. & Li, W. K. L. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16, 1137–1144 (2010).

    Google Scholar 

  122. Thornton, D. C. O. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 49, 20–46 (2014).

    CAS  Google Scholar 

  123. Jiang, H.-B. et al. Ocean warming alleviates iron limitation of marine nitrogen fixation. Nat. Clim. Change 8, 709–712 (2018).

    CAS  Google Scholar 

  124. Webster, N. S., Wagner, M. & Negri, A. P. Microbial conservation in the Anthropocene. Environ. Microbiol. 20, 1925–1928 (2018).

    PubMed  Google Scholar 

  125. Cavicchioli, R. A vision for a ‘microbcentric’ future. Microb. Biotechnol. 12, 26–29 (2019).

    PubMed  Google Scholar 

  126. Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).

    CAS  PubMed  Google Scholar 

  127. Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    CAS  PubMed  Google Scholar 

  128. Fellbaum, C. R., Mensah, J. A., Pfeffer, P. E., Kiers, E. T. & Bücking, H. The role of carbon in fungal nutrient uptake and transport Implications for resource exchange in the arbuscular mycorrhizal symbiosis. Plant Signal. Behav. 7, 1509–1512 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change 7, 148–152 (2017).

    CAS  Google Scholar 

  130. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    CAS  PubMed  Google Scholar 

  131. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  PubMed  Google Scholar 

  132. Hovenden, M. J. et al. Globally consistent influences of seasonal precipitation limit grassland biomass response to elevated CO2. Nat. Plants 5, 167–173 (2019).

    CAS  PubMed  Google Scholar 

  133. Evans, R. D. et al. Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2. Nat. Clim. Change 4, 394–397 (2014).

    CAS  Google Scholar 

  134. Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).

    Google Scholar 

  135. Davidson, T. A. et al. Synergy between nutrients and warming enhances methane ebullition from experimental lakes. Nat. Clim. Change 8, 156–160 (2018).

    CAS  Google Scholar 

  136. van Bergen, T. J. H. M. et al. Seasonal and diel variation in greenhouse gas emissions from an urban pond and its major drivers. Limnol. Oceanogr. https://doi.org/10.1002/lno.11173 (2019).

    Article  Google Scholar 

  137. Bragazza, L., Parisod, J., Buttler, A. & Bardgett, R. D. Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nat. Clim. Change 3, 273–277 (2013).

    CAS  Google Scholar 

  138. Gallego-Sala, A. V. & Prentice, I. C. Blanket peat biome endangered by climate change. Nat. Clim. Change 3, 152–155 (2013).

    Google Scholar 

  139. Lupascu, M. et al. High Arctic wetting reduces permafrost carbon feedbacks to climate warming. Nat. Clim. Change 4, 51–55 (2014).

    CAS  Google Scholar 

  140. Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).

    CAS  PubMed  Google Scholar 

  141. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    CAS  PubMed  Google Scholar 

  142. Hoegh-Guldberg, O. et al. in Special Report: Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 3 (IPCC, 2018).

  143. Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).

    CAS  PubMed  Google Scholar 

  144. Hicks Pries, C. E., Castanha, C., Porras, R. C. & Torn, M. S. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).

    CAS  PubMed  Google Scholar 

  145. van Gestel, N. et al. Predicting soil carbon loss with warming. Nature 554, E4–E5 (2018).

    PubMed  Google Scholar 

  146. Crowther, T. W. et al. Crowther et al. reply. Nature 554, E7–E8 (2018).

    CAS  PubMed  Google Scholar 

  147. Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).

    CAS  PubMed  Google Scholar 

  148. Norby, R. J., Ledford, J., Reilly, C. D., Miller, N. E. & O’Neill, E. G. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc. Natl Acad. Sci. USA 101, 9689–9693 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006 (2009).

    CAS  PubMed  Google Scholar 

  150. Schlesinger, W. H. & Lichter, J. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411, 466–469 (2001).

    CAS  PubMed  Google Scholar 

  151. Sayer, E. J., Heard, M. S., Grant, H. K., Marthews, T. R. & Tanner, E. V. J. Soil carbon release enhanced by increased tropical forest litterfall. Nat. Clim. Change 1, 304–307 (2011).

    CAS  Google Scholar 

  152. Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).

    Google Scholar 

  153. Hartley, I. P. et al. A potential loss of carbon associated with greater plant growth in the European Arctic. Nat. Clim. Change 2, 875–879 (2012).

    CAS  Google Scholar 

  154. Giardina, C. P., Litton, C. M., Crow, S. E. & Asner, G. P. Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nat. Clim. Change 4, 822–827 (2014).

    CAS  Google Scholar 

  155. Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Change 4, 625–630 (2014).

    CAS  Google Scholar 

  156. Fernández-Martínez, M. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 4, 471–476 (2014).

    Google Scholar 

  157. Högberg, P. et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411, 789–792 (2001).

    PubMed  Google Scholar 

  158. Clemmensen, K. E. et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618 (2013).

    CAS  PubMed  Google Scholar 

  159. Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).

    CAS  Google Scholar 

  160. Tang, J. & Riley, W. J. Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nat. Clim. Change 5, 56–60 (2015).

    CAS  Google Scholar 

  161. Schmidt, M. W. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    CAS  PubMed  Google Scholar 

  162. Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E. & Pacala, S. W. Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nat. Clim. Change 4, 1099–1102 (2014).

    CAS  Google Scholar 

  163. Stevnbak, K. et al. Interactions between above- and belowground organisms modified in climate change experiments. Nat. Clim. Change 2, 805–808 (2012).

    CAS  Google Scholar 

  164. Bardgett, R. D. & Wardle, D. A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84, 2258–2268 (2003).

    Google Scholar 

  165. Lubbers, I. M. et al. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Change 3, 187–194 (2013).

    CAS  Google Scholar 

  166. Thakur, M. P. et al. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nat. Clim. Change 8, 75–78 (2018).

    Google Scholar 

  167. Hodgkins, S. B. et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 9, 3640 (2018).

    PubMed  PubMed Central  Google Scholar 

  168. Jansson, J. K. & Tas, N. The microbial ecology of permafrost. Nat. Rev. Microbiol. 12, 414–425 (2014).

    CAS  PubMed  Google Scholar 

  169. McCalley, C. K. et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514, 478–481 (2014).

    CAS  PubMed  Google Scholar 

  170. Grosse, G., Goetz, S., McGuire, A. D., Romanovsky, V. E. & Schuur, E. A. G. Changing permafrost in a warming world and feedbacks to the Earth system. Environ. Res. Lett. 11, 040201 (2016).

    Google Scholar 

  171. Hicks Pries, C. E., Schuur, E. A. G., Natali, S. M. & Crummer, K. G. Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. Nat. Clim. Change 6, 214–218 (2016).

    CAS  Google Scholar 

  172. Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E.-M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 8, 309–312 (2018).

    CAS  Google Scholar 

  173. Jing, X. et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 8159 (2015).

    PubMed  Google Scholar 

  174. Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8, 885–889 (2018).

    CAS  Google Scholar 

  176. Zhou, J. Z. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2, 106–110 (2012).

    CAS  Google Scholar 

  177. Zhou, J. et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 7, 12083 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Change 8, 813–818 (2018).

    Google Scholar 

  179. Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).

    PubMed  Google Scholar 

  180. Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & García-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).

    PubMed  PubMed Central  Google Scholar 

  181. Lipson, D. A. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front. Microbiol. 6, 615 (2015).

    PubMed  PubMed Central  Google Scholar 

  182. Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Change 3, 395–398 (2013).

    CAS  Google Scholar 

  183. Hagerty, S. B. et al. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat. Clim. Change 4, 903–906 (2014).

    CAS  Google Scholar 

  184. Melillo, J. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).

    CAS  PubMed  Google Scholar 

  185. Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3, 909–912 (2013).

    CAS  Google Scholar 

  186. Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017).

    CAS  Google Scholar 

  187. Mackelprang, R., Saleska, S. R., Jacobsen, C. S., Jansson, J. K. & Tas, N. Permafrost meta-omics and climate change. Annu. Rev. Earth Planet. Sci. 44, 439–462 (2016).

    CAS  Google Scholar 

  188. Tas, N. et al. Landscape topography structures the soil microbiome in arctic polygonal tundra. Nat. Commun. 9, 777 (2018).

    PubMed  PubMed Central  Google Scholar 

  189. Woodcroft, B. J. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).

    CAS  PubMed  Google Scholar 

  190. Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Singleton, C. M. et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 12, 2544–2558 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Change 6, 595–600 (2016).

    CAS  Google Scholar 

  193. Kane, E. S. Squeezing the arctic carbon balloon. Nat. Clim. Change 2, 841–842 (2012).

    CAS  Google Scholar 

  194. Hill, P. W. et al. Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition. Nat. Clim. Change 1, 50–53 (2011).

    CAS  Google Scholar 

  195. Newsham, K. K. et al. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat. Clim. Change 6, 182–186 (2016).

    Google Scholar 

  196. Kleinteich, J. et al. Temperature-related changes in polar cyanobacterial mat diversity and toxin production. Nat. Clim. Change 2, 356–360 (2012).

    CAS  Google Scholar 

  197. Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).

    CAS  PubMed  Google Scholar 

  198. Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).

    CAS  PubMed  Google Scholar 

  199. Sitoki, L., Kurmayer, R. & Rott, E. Spatial variation of phytoplankton composition, biovolume, and resulting microcystin concentrations in the Nyanza Gulf (Lake Victoria, Kenya). Hydrobiologia 691, 109–122 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Metcalf, J. S. et al. Public health responses to toxic cyanobacterial blooms: perspectives from the 2016 Florida event. Water Policy 20, 919–932 (2018).

    Google Scholar 

  201. Visser, P. M. et al. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54, 145–159 (2016).

    CAS  PubMed  Google Scholar 

  202. Walsby, A. E., Hayes, P. K., Boje, R. & Stal, L. J. The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytol. 136, 407–417 (1997).

    PubMed  Google Scholar 

  203. Jöhnk, K. D. et al. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Chang. Biol. 14, 495–512 (2008).

    Google Scholar 

  204. Lehman, P. W. et al. Impacts of the 2014 severe drought on the Microcystis bloom in San Francisco Estuary. Harmful Algae 63, 94–108 (2017).

    CAS  PubMed  Google Scholar 

  205. Sandrini, G. et al. Rapid adaptation of harmful cyanobacteria to rising CO2. Proc. Natl Acad. Sci. USA 113, 9315–9320 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Lanz, B., Dietz, S. & Swanson, T. The expansion of modern agriculture and global biodiversity decline: an integrated assessment. Ecol. Econ. 144, 260–277 (2018).

    Google Scholar 

  207. Dai, Z. et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Glob. Change Biol. 24, 3452–3461 (2018).

    Google Scholar 

  208. Gålfalk, M., Olofsson, G., Crill, P. & Bastviken, D. Making methane visible. Nat. Clim. Change 6, 426–430 (2016).

    Google Scholar 

  209. Nisbet, E. G. et al. Very strong atmospheric methane growth in the four years 2014–2017: implications for the Paris Agreement. Global Biogeochem. Cycles 33, 318–342 (2019).

    CAS  Google Scholar 

  210. van Groenigen, K. S., van Kessel, C., Hungate, B. & A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nat. Clim. Change 3, 288–291 (2013).

    Google Scholar 

  211. Ripple, W. J. et al. Ruminants, climate change and climate policy. Nat. Clim. Change 4, 2–5 (2014).

    CAS  Google Scholar 

  212. Steffen, W. et al. Sustainability. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    PubMed  Google Scholar 

  213. Greaver, T. L. et al. Key ecological responses to nitrogen are altered by climate change. Nat. Clim. Change 6, 836–843 (2016).

    CAS  Google Scholar 

  214. Itakura, M. et al. Mitigation of nitrous oxide emissions from soils by Bradyrhizobium japonicum inoculation. Nat. Clim. Change 3, 208–212 (2013).

    CAS  Google Scholar 

  215. Godfray, H. C. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    CAS  PubMed  Google Scholar 

  216. de Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change 2, 276–280 (2012).

    Google Scholar 

  217. de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).

    PubMed  PubMed Central  Google Scholar 

  218. Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    CAS  PubMed  Google Scholar 

  219. Maestre, F. T. et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl Acad. Sci. USA 112, 15684–15689 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Posch, T., Köster, O., Salcher, M. M. & Pernthaler, J. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat. Clim. Change 2, 809–813 (2012).

    CAS  Google Scholar 

  221. Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).

    CAS  PubMed  Google Scholar 

  222. Altizer, S., Ostfeld, R. S., Johnson, P. T., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).

    CAS  PubMed  Google Scholar 

  223. Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).

    PubMed  PubMed Central  Google Scholar 

  224. Bruno, J. F. et al. Thermal stress and coral cover as drivers of coral disease outbreaks. PLOS Biol. 5, e124 (2007).

    PubMed  PubMed Central  Google Scholar 

  225. Randall, J. & van Woesik, R. Contemporary white-band disease in Caribbean corals driven by climate change. Nat. Clim. Change 5, 375–379 (2015).

    Google Scholar 

  226. Maynard, J. et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat. Clim. Change 5, 688–694 (2015).

    Google Scholar 

  227. Randall, C. J. & van Woesik, R. Some coral diseases track climate oscillations in the Caribbean. Sci. Rep. 7, 5719 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Frommel, A. Y. et al. Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat. Clim. Change 2, 42–46 (2012).

    CAS  Google Scholar 

  229. Harvell, C. D. et al. Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). Sci. Adv. 5, eaau7042 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Ling, S. D. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Phil. Trans. R. Soc. B 370, 20130269 (2015).

    PubMed Central  Google Scholar 

  231. Maynard, J. et al. Improving marine disease surveillance through sea temperature monitoring, outlooks and projections. Phil. Trans. R. Soc. B Biol. Sci. 371, 20150208 (2016).

    Google Scholar 

  232. Anderegg, W. R. L., Kane, J. M. & Anderegg, L. D. L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30–36 (2013).

    Google Scholar 

  233. Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).

    Google Scholar 

  234. Raffel, T. R. et al. Disease and thermal acclimation in a more variable and unpredictable climate. Nat. Clim. Change 3, 146–151 (2013).

    Google Scholar 

  235. Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).

    CAS  PubMed  Google Scholar 

  236. MacFadden, D. R., McGough, S. F., Fisman, D., Santillana, M. & Brownstein, J. S. Antibiotic resistance increases with local temperature. Nat. Clim. Change 8, 510–514 (2018).

    CAS  Google Scholar 

  237. Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310–317 (2005).

    CAS  PubMed  Google Scholar 

  238. Semenza, J. C. & Domanovic, D. Blood supply under threat. Nat. Clim. Change 3, 432–435 (2013).

    Google Scholar 

  239. Semenza, J. C. et al. Climate change impact assessment of food- and waterborne diseases. Crit. Rev. Environ. Sci. Technol. 42, 857–890 (2012).

    PubMed  Google Scholar 

  240. McIntyre, K. M. et al. Systematic assessment of the climate sensitivity of important human and domestic animals pathogens in Europe. Sci. Rep. 7, 7134 (2017).

    PubMed  PubMed Central  Google Scholar 

  241. Jones, A. E. et al. Bluetongue risk under future climates. Nat. Clim. Change 9, 153–157 (2019).

    Google Scholar 

  242. Baker-Austin, C. et al. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat. Clim. Change 3, 73–77 (2013).

    Google Scholar 

  243. Pascual, M., Rodó, X., Ellner, S. P., Colwell, R. & Bouma, M. J. Cholera dynamics and El Niño-Southern Oscillation. Science 289, 1766–1769 (2000).

    CAS  PubMed  Google Scholar 

  244. Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl Acad. Sci. USA 113, E5062–E5071 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Powell, J. R. Mosquitoes on the move. Science 354, 971–972 (2016).

    CAS  PubMed  Google Scholar 

  247. Lessler, J. et al. Assessing the global threat from Zika virus. Science 353, aaf8160 (2016).

    PubMed  PubMed Central  Google Scholar 

  248. Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

    PubMed  Google Scholar 

  249. Weaver, S. C. Prediction and prevention of urban arbovirus epidemics: a challenge for the global virology community. Antiviral Res. 156, 80–84 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Bouma, M. J. & Dye, C. Cycles of malaria associated with El Niño in Venezuela. JAMA 278, 1772–1774 (1997).

    CAS  PubMed  Google Scholar 

  251. Baylis, M., Mellor, P. S. & Meiswinkel, R. Horse sickness and ENSO in South Africa. Nature 397, 574 (1999).

    CAS  PubMed  Google Scholar 

  252. Rohani, P. The link between dengue incidence and El Nino Southern Oscillation. PLOS Med. 6, e1000185 (2009).

    PubMed  PubMed Central  Google Scholar 

  253. Kreppel, K. S. et al. A non-stationary relationship between global climate phenomena and human plague incidence in Madagascar. PLOS Neglect.Trop. Dis. 8, e3155 (2014).

    Google Scholar 

  254. Caminade, C. et al. Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proc. Natl Acad. Sci. USA 114, 119–124 (2017).

    CAS  PubMed  Google Scholar 

  255. Giraud, T., Koskella, B. & Laine, A.-L. Introduction: microbial local adaptation: insights from natural populations, genomics and experimental evolution. Mol. Ecol. 26, 1703–1710 (2017).

    PubMed  Google Scholar 

  256. Croll, D. & McDonald, B. A. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems. Mol. Ecol. 26, 2027–2040 (2017).

    CAS  Google Scholar 

  257. Robin, C., Andanson, A., Saint-Jean, G., Fabreguettes, O. & Dutech, C. What was old is new again: thermal adaptation within clonal lineages during range expansion in a fungal pathogen. Mol. Ecol. 26, 1952–1963 (2017).

    PubMed  Google Scholar 

  258. King, J. G., Souto-Maior, C., Sartori, L. M., Maciel-de-Freitas, R. & Gomes, M. G. M. Variation in Wolbachia effects on Aedes mosquitoes as a determinant of invasiveness and vectorial capacity. Nat. Commun. 9, 1483 (2018).

    PubMed  PubMed Central  Google Scholar 

  259. Bakken, L. R. & Frostegård, Å. Sources and sinks for N2O, can microbiologist help to mitigate N2O emissions? Environ. Microbiol. 19, 4801–4805 (2017).

    CAS  PubMed  Google Scholar 

  260. Henderson, G. et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Roehe, R. et al. Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLOS Genet. 12, e1005846 (2016).

    PubMed  PubMed Central  Google Scholar 

  262. Ritchie, H., Reay, D. S. & Higgins, P. Potential of meat substitutes for climate change mitigation and improved human health in high-income markets. Front. Sustain. Food Syst. 2, 16 (2018).

    Google Scholar 

  263. Weng, Z. H. et al. Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nat. Clim. Change 7, 371–376 (2017).

    CAS  Google Scholar 

  264. Liu, D. et al. Constructed wetlands as biofuel production systems. Nat. Clim. Change 2, 190–194 (2012).

    CAS  Google Scholar 

  265. Sánchez, O. Constructed wetlands revisited: microbial diversity in the –omics era. Microb. Ecol. 73, 722–733 (2017).

    PubMed  Google Scholar 

  266. Timmis, K. et al. The contribution of microbial biotechnology to sustainable development goals. Microb. Biotechnol. 10, 984–987 (2017).

    PubMed  PubMed Central  Google Scholar 

  267. Union of Concerned Scientists. World scientists’ warning to humanity. UCSUSA http://www.ucsusa.org/sites/default/files/attach/2017/11/World%20Scientists%27%20Warning%20to%20Humanity%201992.pdf (1992).

  268. Ripple, W. J. et al. The role of Scientists’ Warning in shifting policy from growth to conservation economy. BioScience 68, 239–240 (2018).

    Google Scholar 

  269. Finlayson, C. M. et al. The Second Warning to Humanity — providing a context for wetland management and policy. Wetlands 39, 1 (2019).

    Google Scholar 

  270. Colwell, R. R. & Patz, J. A. Climate, Infectious Disease and Health: An Interdisciplinary Perspective (American Academy of Microbiology, 1998).

  271. Reid, A. Incorporating Microbial Processes Into Climate Models (American Academy of Microbiology, 2012).

  272. Reid, A. & Greene, S. How Microbes Can Help Feed The World (American Academy of Microbiology, 2013).

  273. Paull, S. H. et al. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proc. R. Soc. B 284, 20162078 (2017).

    PubMed  PubMed Central  Google Scholar 

  274. Paaijmans, K. P. et al. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl Acad. Sci. USA 107, 15135–15139 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Colón-González, F. J. et al. Limiting global-mean temperature increase to 1.5–2°C could reduce the incidence and spatial spread of dengue fever in Latin America. Proc. Natl Acad. Sci. USA 115, 6243–6248 (2018).

    PubMed  PubMed Central  Google Scholar 

  276. Ostfeld, R. S. & Brunner, J. L. Climate change and Ixodes tick-borne diseases of humans. Philos. Trans. R. Soc. B 370, 20140051 (2015).

    Google Scholar 

  277. Moore, S. M. et al. El Niño and the shifting geography of cholera in Africa. Proc. Natl Acad. Sci. USA 114, 4436–4441 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Peng, X., Murphy, T. & Holden, N. M. Evaluation of the effect of temperature on the die-off rate for Cryptosporidium parvum oocysts in water, soils, and feces. Appl. Environ. Microbiol. 74, 7101–7107 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Atchison, C. J. et al. Temperature-dependent transmission of rotavirus in Great Britain and The Netherlands. Proc. R. Soc. Biol. B 277, 933–942 (2010).

    CAS  Google Scholar 

  280. Shaman, J. & Lipsitch, M. The El Niño–Southern Oscillation (ENSO)–pandemic Influenza connection: coincident or causal? Proc. Natl Acad. Sci. USA 110, 3689–3691 (2013).

    CAS  PubMed  Google Scholar 

  281. Shaman, J. & Karspeck, A. Forecasting seasonal outbreaks of influenza. Proc. Natl Acad. Sci. USA 109, 20425–20430 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Nguyen, C. et al. Recent advances in our understanding of the environmental, epidemiological, immunological, and clinical dimensions of coccidioidomycosis. Clin. Microbiol. Rev. 26, 505–525 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Tian, H. et al. Interannual cycles of Hantaan virus outbreaks at the human–animal interface in Central China are controlled by temperature and rainfall. Proc. Natl Acad. Sci. USA 114, 8041–8046 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Glass, G. E. et al. Satellite imagery characterizes local animal reservoir populations of Sin Nombre virus in the southwestern United States. Proc. Natl Acad. Sci. USA 99, 16817–16822 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 


Page 2

Nature Reviews Microbiology (Nat Rev Microbiol) ISSN 1740-1534 (online) ISSN 1740-1526 (print)